Ta có: \(\sqrt{6}< \sqrt{9}=3;\sqrt{2}< \sqrt{5}\)
\(\Rightarrow3+\sqrt{5}>\sqrt{2}+\sqrt{6}\)
Ta có: \(\sqrt{6}< \sqrt{9}=3;\sqrt{2}< \sqrt{5}\)
\(\Rightarrow3+\sqrt{5}>\sqrt{2}+\sqrt{6}\)
So sánh 2 số: \(R=\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(S=\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
So sánh 2 số: \(R=\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(S=\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{3\sqrt{2}-\sqrt{4-\sqrt{7}}}\)
cho hai biểu thức A=\(\dfrac{2\sqrt{x}-4}{\sqrt{x}-1}\) và B=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\) với x\(\ge\)0, x\(\ne\)1
a.tính giá trị của A khi x=4
b.rút gọn B
c.so sánh A.B với 5
So sánh: \(\sqrt{6+2\sqrt{5}}-\sqrt{5}\) và \(\sqrt[3]{7+5\sqrt{2}-\sqrt{2}}\)
So sánh \(\sqrt{2015}+\sqrt{2018}\) và \(\sqrt{2016}+\sqrt{2017}\)
1. So sánh:
\(\sqrt{13}-\sqrt{12}\)và \(\sqrt{7}-\sqrt{6}\)
2. Giải pt:
\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
Rút gọn
H=\(\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
F=\(\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
G=\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
E=\(\frac{2\sqrt{3+\sqrt{5-13+\sqrt{48}}}}{\sqrt{6}+\sqrt{2}}\)
D=\(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
Z=\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10-2\sqrt{5}}}\)
Trục căn ở mẫu:
\(a)\frac{5}{\sqrt{10}}\\ b)\frac{-2}{1-\sqrt{5}}\\ c)\frac{4}{\sqrt{3}+\sqrt{2}}\\ d)\frac{1}{3-2\sqrt{2}}\\ e)\frac{6-\sqrt{6}}{1-\sqrt{6}}\\ g)\frac{3\sqrt{2}-2\sqrt{3}}{2\left(\sqrt{3}-\sqrt{2}\right)}\\ h)\frac{\sqrt{3}-3}{\sqrt{3}-1}\\ i)\frac{\sqrt{15}}{5\sqrt{3}+3\sqrt{5}}\)
Rút gọn các biểu thức sau:
1) \(\frac{1}{\sqrt{7-\sqrt{24}+1}}-\frac{1}{\sqrt{7+\sqrt{24}}}\)
2) \(\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\frac{\sqrt{3}}{\sqrt{\sqrt{3}-1}+1}\)
3) \(\sqrt{\frac{5+2\sqrt{6}}{5-\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+\sqrt{6}}}\)
4) \(\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}+\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}\)
Rút gọn các biểu thức :
\(a,\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
\(b,\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)