\(\sqrt{13}-\sqrt{12}=\frac{1}{\sqrt{13}+\sqrt{12}}\) ; \(\sqrt{7}-\sqrt{6}=\frac{1}{\sqrt{7}+\sqrt{6}}\)
Mà \(\sqrt{13}+\sqrt{12}>\sqrt{7}+\sqrt{6}\Rightarrow\frac{1}{\sqrt{13}+\sqrt{12}}< \frac{1}{\sqrt{7}+\sqrt{6}}\)
\(\Rightarrow\sqrt{13}-\sqrt{12}< \sqrt{7}-\sqrt{6}\)
ĐKXĐ: \(x\ge\frac{5}{2}\)
\(\Leftrightarrow\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)
\(\Leftrightarrow\sqrt{2x-5+6\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|=4\)
\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|1-\sqrt{2x-5}\right|=4\)
Mà \(\left|\sqrt{2x-5}+3\right|+\left|1-\sqrt{2x-5}\right|\ge\left|\sqrt{2x-5}+3+1-\sqrt{2x-5}\right|=4\)
Dấu "=" xảy ra khi và chỉ khi \(1-\sqrt{2x-5}\ge0\Rightarrow2x-5\le1\Rightarrow x\le3\)
Vậy nghiệm của pt là \(\frac{5}{2}\le x\le3\)