1)Ta có \(\left(\frac{1}{16}\right)^{10}\)=\(\left[\left(\frac{1}{2}\right)^4\right]^{10}\)=\(\left(\frac{1}{2}\right)^{40}\)
Vì \(2^{40}\)<\(2^{50}\)=>\(\left(\frac{1}{2}\right)^{40}\)>\(\left(\frac{1}{2}\right)^{50}\)
1) \(\left(\frac{1}{16}\right)^{10}=\left(\frac{1^4}{2^4}\right)^{10}=\left[\left(\frac{1}{2}\right)^4\right]^{10}=\left(\frac{1}{2}\right)^{40}\)
Vì \(\left(\frac{1}{2}\right)^{40}< \left(\frac{1}{2}\right)^{50}\) nên \(\left(\frac{1}{16}\right)^{10}< \left(\frac{1}{2}\right)^{50}\)
2) \(64^8=\left(4^3\right)^8=4^{24}\)
\(16^{12}=\left(4^2\right)^{12}=4^{24}\)
Vì \(4^{24}=4^{24}\) nên \(64^8=16^{12}\)
2)Ta có \(64^8\)=\(\left(16.4\right)^8\)=\(16^8\).\(4^8\)=\(16^8\).\(\left(4^2\right)^4\)=\(16^8\).\(16^4\)=\(16^{12}\)
=>\(64^8\)=\(16^{12}\)
Câu 1 thiếu nên \(\left(\frac{1}{16}\right)^{10}\)>\(\left(\frac{1}{2}\right)^{50}\)