Đề bài rất có vấn đề, chỉ có 3 giá trị nguyên dương của x thỏa mãn ĐKXĐ là 1;2;3. Như vậy chỉ cần thay lần lượt 3 giá trị này vào thử là xong, ko cần giải (ngay cả tự luận cũng được phép làm thế). Chắc ko ai cho đề kiểu vậy đâu.
Đề bài rất có vấn đề, chỉ có 3 giá trị nguyên dương của x thỏa mãn ĐKXĐ là 1;2;3. Như vậy chỉ cần thay lần lượt 3 giá trị này vào thử là xong, ko cần giải (ngay cả tự luận cũng được phép làm thế). Chắc ko ai cho đề kiểu vậy đâu.
Bài 1: Tìm số nghiệm thuộc \(\left(-\pi;\pi\right)\) của phương trình \(tan\left(2x-\frac{\pi}{4}\right)=tan\left(x+\frac{\pi}{3}\right)\)
Bài 2: Nghiệm âm lớn nhất của phương trình \(cos\left(3x-\frac{\pi}{3}\right)=0\)
Bài 3: Tổng nghiêm dương nhỏ nhất và nghiệm âm lớn nhất của phương trình \(sin\left(x-\frac{3\pi}{4}\right)=\frac{\sqrt{3}}{2}\)
Tìm nghiệm dương nhỏ nhất của phương trình
\(\cos\pi\left(x^2+2x-\dfrac{1}{2}\right)=\sin\left(\pi x^2\right)\)
Tìm nghiệm dương nhỏ nhất của phương trình \(Cos\pi x^2=cos\left[\pi\left(x^2+2x+1\right)\right]\)
Tìm số nghiệm thuộc \(\left[\frac{-3\pi}{2};-\pi\right]\) của pt
\(\sqrt{3}sinx=cos\left(\frac{3\pi}{2}-2x\right)\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
a) \(y=f\left(x\right)=\dfrac{4}{\sqrt{5-2\cos^2x\sin^2x}}\)
b)\(y=f\left(x\right)=3\sin^2x+5\cos^2x-4\cos2x-2\)
c)\(y=f\left(x\right)=\sin^6x+\cos^6x+2\forall x\in\left[\dfrac{-\pi}{2};\dfrac{\pi}{2}\right]\)
Tìm nghiệm của các phương trinh:
1,\(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)
2,\(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}\left(1+cot2xcotx\right)=0\)
3,\(cos^4x+sin^4x+cos\left(x-\dfrac{\pi}{4}\right)sin\left(3x-\dfrac{\pi}{4}\right)-\dfrac{3}{2}=0\)
4,\(cos5x+cos2x+2sin3xsin2x=0\) trên \(\left[0;2\pi\right]\)
5,\(\dfrac{cos\left(cosx+2sinx\right)+3sinx\left(sinx+\sqrt{2}\right)}{sin2x-1}=1\)
6,\(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)
7,\(cos\left(2x+\dfrac{\pi}{4}\right)+cos\left(2x-\dfrac{\pi}{4}\right)+4sinx=2+\sqrt{2}\left(1-sinx\right)\)
tìm tập xác định của hàm số lượng giác sau
a)\(y=\dfrac{tan\left(2x-\dfrac{\pi}{4}\right)}{\sqrt{1-sin\left(x-\dfrac{\pi}{8}\right)}}\)
b)\(y=\dfrac{tan\left(x-\dfrac{\pi}{4}\right)}{1-cos\left(x+\dfrac{\pi}{3}\right)}\)
c)\(y=\dfrac{3}{cosx-cos3x}\)
d)\(y=\dfrac{4}{sin^2x-cos^2x}\)
e)\(y=\dfrac{1+cot\left(\dfrac{\pi}{3}+x\right)}{tan^2\left(3x-\dfrac{\pi}{4}\right)}\)
Giải các pt sau
a, \(\dfrac{1}{sinx}+\dfrac{1}{cosx}=4sin\left(x+\dfrac{\pi}{4}\right)\)
b, \(2sin\left(2x-\dfrac{\pi}{6}\right)+4sinx+1=0\)
c, \(cos2x+\sqrt{3}sinx+\sqrt{3}sin2x-cosx=2\)
d, \(4sin^2\dfrac{x}{2}-\sqrt{3}cos2x=1+cos^2\left(x-\dfrac{3\pi}{4}\right)\)
giải phương trình
\(\sin x\sqrt{1+2\sin x}=\cos2x\)
\(\sin\left(\frac{5x}{2}-\frac{\pi}{4}\right)-\cos\left(\frac{x}{2}-\frac{\pi}{4}\right)=\sqrt{2}\cos\frac{3x}{2}\)
\(3\sqrt{\tan x+1}\left(\sin x+2\cos x\right)=5\left(\sin x+3\cos x\right)\)
\(\sqrt{2}\left(\sin x+\sqrt{3}\cos x\right)=\sqrt{3}\cos2x-\sin2x\)
\(\sin2x\sin4x+2\left(3\sin x-4\sin^2x+1\right)=0\)