Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:
1,\(y=5-3cosx\)
2,\(y=3cos^2x-2cosx+2\)
3,\(y=cos^2x+2cos2x\)
4,\(y=\sqrt{5-2sin^2x.cos^2x}\)
5,\(y=cos2x-cos\left(2x-\dfrac{\pi}{3}\right)\)
6,\(y=\sqrt{3}sinx-cosx-2\)
7,\(y=2cos^2x-sin2x+5\)
8,\(y=2sin^2x-sin2x+10\)
9,\(y=sin^6x+cos^6x\)
Bài 2 : Tìm giá trị lớn nhất , giá trị nhỏ nhất của hàm số sau
a , y = 2sin3x+1
b, y = 1+cos22x
c , y = sinx+cosx+2
d , y = 3cosx -cos 2x +5
tìm tập xác định của hàm số sau:
a, y=cot \(\left(\frac{\pi}{2}.sinx\right)\)
b, y= \(\sqrt{sinx-1}+2-cos^2x\)
c, y= \(\frac{tanx+cotx}{cos2x}\)
d, y=\(\frac{sinx-tanx}{sinx+cotx}\)
e, y=\(\frac{cotx}{cos^2x-3cosx+2}\)
Giai phương trình bậc hai theo sin hoặc cos có biến đổi đơn giản như :
a/ \(sin^2x+3cosx-3=0\)
b/ \(2cos^2x+sinx-1=0\)
c/ \(cos2x-5cosx+2=0\)
d/ \(cos2x+2sinx-2=0\)
cos(2x+\(\dfrac{\pi}{4}\))+cos(2x-\(\dfrac{\pi}{4}\))+4sinx=2+\(\sqrt{2}\)(1-sinx)
Giải các phương trình sau:
a) Sinx + \(\sqrt{3}\) Cosx + 2Sin(\(\dfrac{\Pi}{6}\)-x) = \(\sqrt{2}\)
b) 3Cosx - 4Sinx + \(\dfrac{2}{3Cosx-4Sinx-6}\)= 3
c) 8Sinx = \(\dfrac{\sqrt{3}}{Cosx}+\dfrac{1}{Sinx}\)
d) 3Sin3x - \(\sqrt{3}\) Cos9x = 1 + 4Sin33x
e) 5Sin2x - 6Cos2x = 13
f) Cos7x - \(\sqrt{3}\) Sin7x - Sinx = \(\sqrt{3}\) Cos x
sinx + cos x+ 1+ sin 2x+ cos 2x =0
Tìm GTLN và GTNN của hàm số : 1. y = sinx + 2cosx +1 / 2sinx + cosx + 3
2.y= 2sin^2sinx - 3 sinx cosx + cos^2 x
Giải phương trình : 1. 2sin^2 * 2x + sin7x -1 = sinx
2.cos 4x + 12 sin^2 x -1 = 0
Tìm min, max
a, y= \(4sin^2x-5sinx.cosx+cos^2x+10\)
b, y= \(\dfrac{sin^2x-2sin2x+1}{3+sin^2x+2cos^2x}\)
c, y= \(2sinx+3cosx+4\)