Chứng minh : \(\Sigma\dfrac{C_n^k}{C_{n+k+2}^{k+1}}\)=\(\dfrac{1}{2}\) với mọi n \(\ge\)2
( tổng \(\Sigma\) k chạy từ 0 đến n)
(Bài này làm như thế nào vậy mn?Khó quas)
Cho đa giác đều (H) có 30 đỉnh. Lấy tùy ý 3 đỉnh của (H). Xác suất để 3 đỉnh lấy được tạo thành một tam giác tù bằng?
A. 39/140
B. 39/58
C. 45/58
D. 39/280
Người ta dùng 18 quyển sách gồm 7 quyển sách toán, 6 quyển sách lý, 5 quyển sách hóa để làm phần thưởng cho 9 học sinh và mỗi học sinh nhận được 2 quyển sách khác nhau. Tên của 9 học sinh theo thứ tự là A, B, C, D, E, F, G, H, K. Tính xác suất để hai học sinh A và B nhận được phần thưởng giống nhau.
Đội văn nghệ của một trường có 12 học sinh, gồm 5 em lớp A, 4 em lớp B và 3 em lớp C. Cần chọn ra 4 em đi biểu diễn sao cho 4 bạn này thuộc không quá 2 trong 3 lớp trên. Hỏi có bao nhiêu cách chọn như vậy?
(Câu này chọn B hay D vậy mn??)
Để khen thưởng cho học sinh trong lớp có thành tích cao trong học kỳ I. Cô giáo mua 5 quyền sổ và 3 hộp bút ( các quyển sổ giống nhau, các hộp bút giống nhau) để phát cho 8 bạn có thành tích cao trong lớp. Hỏi cô giáo có bao nhiêu cách phát, biết mỗi bạn chỉ nhận được một phần thưởng:
A. \(C^5_8.5!\)
B. \(C_8^5\)
C. \(A_8^5\)
D. 8!
Các anh/chị giúp em câu hỏi xác xuất này với ạ.
Tỉ lệ mua vé số trúng Giải là 2%, tỉ lệ trúng giải độc đắc là 35% của 1% trúng giải. Nếu sau 50 lần mua vé liên tiếp không trúng giải, thì cứ mỗi lần mua vé tiếp theo tỉ lệ trúng giải sẽ tăng thêm 2%(Ví dụ sau lần 51 là 4%, sau lần 52 là 6%, sau lần 53 là 8%...) và khi đã trúng giải thì tỉ lệ này sẽ được đặt về lại ban đầu là 2%.
Vậy tỉ lệ trúng giải độc đắc sau 300 lần mua vé số là bao nhiêu?
(Bài này làm như nào vậy mn?)
Cho tứ diện với 4 đỉnh là A, B, C, D. Gọi M, N, P, Q, R, S lần lượt là trung điểm các cạnh AB, CD, AC, BD, AD, BC; \(A_1,B_1,C_1,D_1\) lần lượt là trọng tâm các mặt BCD, ACD, ABD, ABC và G là trọng tâm tứ diện. Chọn ngẫu nhiên 5 điểm trong số 15 điểm trên. Khi đó, xác suất để 5 điểm được chọn cùng nằm trên một mặt phẳng bằng bao nhiêu?
A. 71/1001
B. 75/1001
C. 74/1001
D.10/143
(Bài này làm như nào vậy mn?)
Cho tứ diện với 4 đỉnh là A, B, C, D. Gọi M, N, P, Q, R, S lần lượt là trung điểm các cạnh AB, CD, AC, BD, AD, BC; \(A_1,B_1,C_1,D_1\) lần lượt là trọng tâm các mặt BCD, ACD, ABD, ABC và G là trọng tâm tứ diện. Chọn ngẫu nhiên 5 điểm trong số 15 điểm trên. Khi đó, xác suất để 5 điểm được chọn cùng nằm trên một mặt phẳng bằng bao nhiêu?
A. 71/1001
B. 75/1001
C. 74/1001
D.10/143
Có 3 bạn A, B, C cùng giải 1 bài thi môn XSTK. Xác suất để mỗi bạn giải được bài lần lượt là 1/8; 1/9; 1/10
a. Tính xác suất có 1 bạn giải được bài.
b. Tính xác suất để bạn thứ 2 giải được bài biết rằng có bạn giải được bài.
c. Chọn ngẫu nhiên 1 bạn, cho bạn đó giải 5 bài. Tính xác suất bạn đó giải được 3 bài