Rút gọn biểu thức
a) \(\left(x+2\right)^3-\left(x-3\right)^3-3\left(x+5\right)\left(x-2\right)\)
b)\(\left(7x-3\right)^2+\left(5x+3\right)^2-2\left(5x+3\right)\left(7x-3\right)\)
Bài 1: Phân tích đa thức thành nhân tử:
a) \(2x\left(x+1\right)+2\left(x+1\right)\)
b) \(y^2\left(x^2+y\right)-zx^2-zy\)
c) \(4x\left(x-2y\right)+8y\left(2y-x\right)\)
d) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)
e) \(x^2-6xy+9y^2\)
f) \(x^3+6x^2y+12xy^2+8y^3\)
g) \(x^3-64\)
h) \(125x^3+y^6\)
k) \(0,125\left(a+1\right)^3-1\)
t) \(x^2-2xy+y^2-xz+yz\)
q) \(x^2-y^2-x+y\)
p) \(a^3x-ab+b-x\)
đ) \(3x^2\left(a+b+c\right)+36xy\left(a+b+c\right)+108y^2\left(a+b+c\right)\)
l) \(x^2-x-6\)
i) \(x^4+4x^2-5\)
m) \(x^3-19x-30\)
j) \(x^4+x+1\)
y) \(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
o) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
ê) \(4a^2b^2-\left(a^2+b^2+c^2\right)^2\)
w) \(\left(1+x^2\right)^2-4x\left(1-x^2\right)\)
z) \(\left(x^2-8\right)^2+36\)
u) \(81x^4+4\)
Bài 2 : Tìm x
a)\(\left(2x-1\right)^2-25=0\)
b) \(8x^3-50x=0\)
c) \(\left(x-2\right)\left(x^2+2+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)
d) \(3x\left(x-1\right)+x-1=0\)
e) \(2\left(x+3\right)-x^2-3x\) =0
f) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)
g) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
Phân tích các đa thức sau thành nhân tử:
* \(x^3-7x+6\)
* \(x^3-9x^2+6x+16\)
* \(x^3-6x^2-x+30\)
* \(2x^3-x^2+5x+3\)
* \(27x^3-27x^2+18x-4\)
* \(x^2+2xy+y^2-x-y-12\)
* \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
* \(4x^4-32x^2+1\)
* \(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)
* \(64x^4+y^4\)
* \(a^6+a^4+a^2b^2+b^4-b^6\)
* \(x^3+3xy+y^3-1\)
* \(4x^4+4x^3+5x^2+2x+1\)
* \(x^8+x+1\)
* \(x^8+3x^4+4\)
* \(3x^2+22xy+11x+37y+7y^2+10\)
* \(x^4-8x+63\)
* \(\left(x+y+z\right)\left(xy+yz+zx\right)-xyz\)
* \(xy\left(x+y\right)-yz\left(y+z\right)+xz\left(x-z\right)\)
* \(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
* \(a^4\left(b-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)
* \(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab^2+c^3-3abc\)
* \(\left(a+b+c\right)^3-a^3-b^3-c^3=[\left(a+b\right)c]^3-a^3-b^3-c^3\)
* \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
\([\) Các bạn làm được bài nài thì làm giúp mk với nha,làm vài câu cũng được\(]\)
Mk mệt quá rồi làm giúp mk với nha
Phân tích thành nhân tử
a. \(\left(x^2+8x+7\right)\left(x+3\right)\left(x+5\right)+15\)
b. \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)
c. \(\left(x+5\right)\left(x+6\right)\left(x+10\right)\left(x+12\right)-3x^2\)
Làm tính nhân :
a) \(\left(x+3y\right)\left(x^2-2xy+y\right)\)
b) \(\left(x^2-1\right)\left(x^2+2x\right)\)
c) \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)
d)\(\left(x+2\right)\left(x-1\right)\)
e) \(x\left(x-y\right)-y\left(y-x\right)\)
Phân tích đa thức thành nhân tử
a, 5x-10\(x^2\)
b, \(\dfrac{1}{2}x\left(x^2-4\right)+4\left(y+2\right)\)
c, \(x^4-y^6\)
d, \(x^3+y\left(1-3x^2\right)+z\left(3y^2-1\right)-y^3\)
e, \(x^3-4x^2+4x-1\)
f, \(x^2+2xy-8y^2+2xz+14yz+3z^2\)
g, \(x^4+6x^3-12x^2-8x\)
h, \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
Phân tích các đa thức sau thành phân tử:
b) \(5xy^2-10xyz+5xz^2\)
c) \(3x^2\left(a+b+c\right)+36xy\left(a+b+c\right)+108y^2\left(a+b+c\right)\)
d) \(\left(4x-8\right)\left(x^2+6\right)-\left(4x-8\right)\left(x+7\right)+9\left(8-4x\right)\)
e) \(100x^2-\left(x^2+25\right)^2\)
f) \(\left(x-y+5\right)^2-2\left(x-y+5\right)+1\)
phân tích đa thức thành nhân tử :
a) \(x^2+2xy+y^2+2x+2y-15\)
b) \(\left(x+â\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\)
c) \(6x^4-11x^2+3\)
d) \(\left(x^2+x\right)+3\left(x^2+x\right)+2\)
e) \(x^2-2xy+y^2+3x-3y-10\)
Rút gọn biểu thức
\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)