a) Ta có: \(A=\left(x+3\right)^2+\left(x-3\right)\left(x+3\right)-2\left(x+2\right)\left(x-4\right)\)
\(=x^2+6x+9+x^2-9-2\left(x^2-2x-8\right)\)
\(=2x^2+6x-2x^2+4x+16\)
\(=10x+16\)
Thay \(x=-\frac{1}{2}\) vào biểu thức \(A=10x+16\), ta được:
\(A=10\cdot\frac{-1}{2}+16=-5+16=11\)
Vậy: 11 là giá trị của biểu thức \(A=\left(x+3\right)^2+\left(x-3\right)\left(x+3\right)-2\left(x+2\right)\left(x-4\right)\) tại \(x=-\frac{1}{2}\)
b) Ta có: \(B=\left(3x+4\right)^2-\left(x-4\right)\left(x+4\right)-10x\)
\(=9x^2+24x+16-\left(x^2-16\right)-10x\)
\(=9x^2+14x+16-x^2+16\)
\(=8x^2+14x+32\)
Thay \(x=-\frac{1}{10}\) vào biểu thức \(B=8x^2+14x+32\), ta được:
\(B=8\cdot\left(-\frac{1}{10}\right)^2+14\cdot\frac{-1}{10}+32\)
\(=8\cdot\frac{1}{100}-\frac{14}{10}+32\)
\(=\frac{2}{25}-\frac{14}{10}+32\)
\(=\frac{4}{50}-\frac{70}{50}+\frac{1600}{50}\)
\(=\frac{1534}{50}\)
Vậy: \(\frac{1534}{50}\) là giá trị của biểu thức \(B=\left(3x+4\right)^2-\left(x-4\right)\left(x+4\right)-10x\) tại \(x=-\frac{1}{10}\)
c) Ta có: \(C=\left(x+1\right)^2-\left(2x-1\right)^2+3\left(x-2\right)\left(x+2\right)\)
\(=x^2+2x+1-\left(4x^2-4x+1\right)+3\left(x^2-4\right)\)
\(=x^2+2x+1-4x^2+4x-1+3x^2-12\)
\(=6x-12\)
Thay x=1 vào biểu thức C=6x-12, ta được:
\(C=6\cdot1-12=6-12=-6\)
Vậy: -6 là giá trị của biểu thức \(C=\left(x+1\right)^2-\left(2x-1\right)^2+3\left(x-2\right)\left(x+2\right)\) tại x=1
d) Ta có: \(D=\left(x-3\right)\left(x+3\right)+\left(x-2\right)^2-2x\left(x-4\right)\)
\(=x^2-9+x^2-4x+4-2x^2+8x\)
\(=4x-5\)
Thay x=-1 vào biểu thức D=4x-5, ta được:
\(D=4\cdot\left(-1\right)-5=-4-5=-9\)
Vậy: -9 là giá trị của biểu thức \(D=\left(x-3\right)\left(x+3\right)+\left(x-2\right)^2-2x\left(x-4\right)\) tại x=-1