\(P=\dfrac{\sqrt{2}\left(3+\sqrt{5}\right)}{\sqrt{2}\left(2\sqrt{2}+\sqrt{3+\sqrt{5}}\right)}+\dfrac{\sqrt{2}\left(3-\sqrt{5}\right)}{\sqrt{2}\left(2\sqrt{2}-\sqrt{3-\sqrt{5}}\right)}\)
\(=\dfrac{3\sqrt{2}+\sqrt{10}}{4+\sqrt{6+2\sqrt{5}}}+\dfrac{3\sqrt{2}-\sqrt{10}}{4-\sqrt{6-2\sqrt{5}}}\)
\(=\dfrac{3\sqrt{2}+\sqrt{10}}{5+\sqrt{5}}+\dfrac{3\sqrt{2}-\sqrt{10}}{5-\sqrt{5}}\)
\(=\dfrac{\left(3\sqrt{2}+\sqrt{10}\right)\left(5-\sqrt{5}\right)+\left(3\sqrt{2}-\sqrt{10}\right)\left(5+\sqrt{5}\right)}{20}\)
\(=\dfrac{15\sqrt{2}-3\sqrt{10}+5\sqrt{10}-5\sqrt{2}+15\sqrt{2}+3\sqrt{10}-5\sqrt{10}-5\sqrt{2}}{20}\)
\(=\dfrac{30\sqrt{2}-10\sqrt{2}}{20}=\dfrac{20\sqrt{2}}{20}=\sqrt{2}\)
\(\)