<=>\(\dfrac{3\sqrt{2}+\sqrt{10}}{2+\sqrt{6+2\sqrt{5}}}+\dfrac{3\sqrt{2}-\sqrt{10}}{2-\sqrt{6-2\sqrt{5}}}\)
<=>\(\dfrac{3\sqrt{2}+\sqrt{10}}{\sqrt{5}+3}+\dfrac{3\sqrt{2}-\sqrt{10}}{3-\sqrt{5}}\)
<=>\(2\sqrt{2}\)
<=>\(\dfrac{3\sqrt{2}+\sqrt{10}}{2+\sqrt{6+2\sqrt{5}}}+\dfrac{3\sqrt{2}-\sqrt{10}}{2-\sqrt{6-2\sqrt{5}}}\)
<=>\(\dfrac{3\sqrt{2}+\sqrt{10}}{\sqrt{5}+3}+\dfrac{3\sqrt{2}-\sqrt{10}}{3-\sqrt{5}}\)
<=>\(2\sqrt{2}\)
Rút gọn biểu thức: \(A=\dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}-\dfrac{\sqrt{3-\sqrt{5}}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}\)
rút gọn biểu thức sau:
a.\(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
b.\(A=\dfrac{\sqrt{a}}{\sqrt{a}-5}-\dfrac{10\sqrt{a}}{a-25}-\dfrac{5}{\sqrt{a}+5}\) với a\(\ge\)0; a\(\ne25\)
rút gọn:
\(A=\dfrac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
Rút gọn các biểu thức sau:
a) \(\dfrac{4}{\sqrt{11}-3}-\dfrac{5}{4+\sqrt{11}}\)
b) \(\left(\dfrac{3\sqrt{x}}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}+13}{x+6\sqrt{x}+9}\) với x>0;x\(\ne\)4
rút gọn :\(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}-\dfrac{5}{\sqrt{3}-2\sqrt{2}}-\dfrac{5}{\sqrt{3}+\sqrt{8}}\)
So sánh 2 số: \(R=\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(S=\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
So sánh 2 số: \(R=\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(S=\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{3\sqrt{2}-\sqrt{4-\sqrt{7}}}\)
rút gọn:
\(x=\sqrt{2+\sqrt{\dfrac{5+\sqrt{5}}{2}}}+\sqrt{2-\sqrt{\dfrac{5-\sqrt{5}}{2}}}-\sqrt{3-\sqrt{5}}-1\)
Rút gọn các biểu thức :
A=\(\dfrac{1}{\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}}\)
B= \(\dfrac{1}{1+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+...+\dfrac{1}{\sqrt{2015}+\sqrt{2017}}\)