\(\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{x+\sqrt{x}}-\frac{2}{1-x}\right)\) (ĐKXĐ : \(x>0;x\ne1;x\ne\frac{1}{9}\) )
\(=\left[\frac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\left[\frac{\sqrt{x}-1}{\sqrt{x}.\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2\sqrt{x}}{\sqrt{x}.\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{3\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{3\sqrt{x}-1}\)
\(=\frac{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}{3\sqrt{x}-1}\)