Rút gọn A = \(\left(\frac{3}{\sqrt{x}-1}-\frac{\sqrt{x}-3}{x-1}\right)\div\left(\frac{x+2}{x+\sqrt{x}-2}-\frac{\sqrt{x}}{\sqrt{x}+2}\right)\)
Rút gọn : \(\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{x+\sqrt{x}}-\frac{2}{1-x}\right)\)
\(A=\left[\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\sqrt{x}+9}{x-9}+\frac{2\sqrt{x}}{\sqrt{x}+3}\right]\div\left[\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right]\)
a) Tìm tập xác định và rút gọn A
b) \(x=?\) để \(A< -1\)
Rút gọn : \(\left(\frac{\sqrt{x}-1}{\sqrt{x+1}}+\frac{\sqrt{x}+1}{\sqrt{x-1}}\right).\left(1-\frac{2}{x+1}\right)^2\)
1) Rút gọn : \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right):\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
2) CHo \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\). CMR \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Giải hệ phương trình: \(\begin{cases}\frac{y^2\left(y^2-x\right)+\sqrt{y^2+2}}{-x^2-x+2}=\frac{1}{\sqrt{x+3}-x-1}\\3y^4+y^2-\left(2x+4\right)\sqrt{3x^2+x+1}=0\end{cases}\)
a) So \(M=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)vs-\frac{1}{2}\)
b) \(N=\frac{\sqrt{x}+1}{\sqrt{x}-3}\). Tìm \(x\in Z\) để \(N\)là số nguyên dương
các bn giải tiếp cho mk bài này vs
\(D=\left\{\frac{\sqrt{x}+\sqrt{y}}{2\left(\sqrt{x}-\sqrt{y}\right)}-\frac{2\sqrt{xy}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right\}.\frac{2\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2-4\sqrt{xy}}{2\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
*** Lưu ý: { ... } là dấu ngoặc vuông nha tại máy mk ko viết dc ngoặc vuông nên viết tạm thành ngoặc nhọn
Rút gọn D = \(\left(\frac{\sqrt{x}+\sqrt{y}}{2\sqrt{x}-2\sqrt{y}}-\frac{2\sqrt{x}}{x-y}\right).\frac{2\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)