\(\left(\frac{4\sqrt{a}}{\sqrt{a}+2}+\frac{8a}{4-a}\right):\left(\frac{\sqrt{a}-1}{a-2\sqrt{a}}-\frac{2}{\sqrt{a}}\right)\) (ĐKXĐ : \(a>0;a\ne4;a\ne9\))
\(=\left[\frac{4\sqrt{a}\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}-\frac{8a}{a-4}\right]:\left[\frac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-2\right)}-\frac{2\left(\sqrt{a}-2\right)}{\sqrt{a}\left(\sqrt{a}-2\right)}\right]\)
\(=\frac{4a-8\sqrt{a}-8a}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}:\frac{\sqrt{a}-1-2\sqrt{a}+4}{\sqrt{a}\left(\sqrt{a}-2\right)}\)
\(=\frac{-4\sqrt{a}\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}:\frac{-\sqrt{a}+3}{\sqrt{a}\left(\sqrt{a}-2\right)}=\frac{-4\sqrt{a}}{\sqrt{a}-2}.\frac{\sqrt{a}\left(\sqrt{a}-2\right)}{3-\sqrt{a}}=-\frac{4a}{3-\sqrt{a}}\)