ĐKXĐ : \(\left\{{}\begin{matrix}a>0\\a\ne0\end{matrix}\right.\)
Ta có :
\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)
\(=\left(\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right).\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)
\(=\left(1+2\sqrt{a}+a\right).\frac{\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)^2\left(1+\sqrt{a}\right)^2}\)
\(=\left(\sqrt{a}+1\right)^2.\frac{\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)^2\left(1+\sqrt{a}\right)^2}\)
\(=1\)
Vậy...