Ta có: \(\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right):\left(1-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
\(=\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\sqrt{x}+1}\)
\(=\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{2}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}-1}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-1\ne0\\\sqrt{x}+1\ne0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne1\\\sqrt{x}+1\ne0\left(luônđúng\right)\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right):\left(1-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
\(=\left(\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}+1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
\(=\dfrac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2}{x-1}-:\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\sqrt{x}+1}\)
\(=\dfrac{\left(\sqrt{x}+1-\sqrt{x}+1\right)\left(\sqrt{x}+1+\sqrt{x}-1\right)}{x-1}:\dfrac{2}{\sqrt{x}+1}\)
\(=\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}+1}{2}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}-1}\)