\(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}-\sqrt{a}\right)\cdot\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)
\(=\left(1+\sqrt{a}+a-\sqrt{a}\right)\cdot\left(\dfrac{1}{1+\sqrt{a}}\right)^2\)
\(=\dfrac{a+1}{\left(\sqrt{a}+1\right)^2}\)
\(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}-\sqrt{a}\right)\cdot\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)
\(=\left(1+\sqrt{a}+a-\sqrt{a}\right)\cdot\left(\dfrac{1}{1+\sqrt{a}}\right)^2\)
\(=\dfrac{a+1}{\left(\sqrt{a}+1\right)^2}\)
Rút gọn biểu thức:
E=\(\left(\dfrac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\dfrac{x+\sqrt{x}}{x-1}\right)\times\dfrac{x-1}{2x+\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}vớix\ge0,x\ne1\)
M=\(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}\right)\div\left(\dfrac{1}{\sqrt{a}+1}-\dfrac{2}{a-1}\right)vớia\ge0,a\ne1\)
Lm nhanh giúp mk nhé! Thank!
cho biểu thức Q=\(\left(\dfrac{1}{\sqrt{X}-1}-\dfrac{1}{\sqrt{X}}\right):\left(\dfrac{\sqrt{X}+1}{\sqrt{X}-2}-\dfrac{\sqrt{X}+2}{\sqrt{X-1}}\right)\)
a rút gọn Q
b tìm x để Q>0
cho biểu thức a=\(\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)\)
a rút gọn a
b tìm x để a=7
c tính giá trị của a khi x=2(2+\(\sqrt{3}\))
d tìm x để a<1
cho biểu thức p=\(\left(\dfrac{1}{1-\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{2x+\sqrt{x}-1}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\)
a rút gọn p
b chứng minh rằng p>1
cho biểu thức P =\(\left(\dfrac{\sqrt{x}}{\sqrt{x-1}}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{2}{x}-\dfrac{2-x}{x\sqrt{x}+x}\right)\)với 0<x≠1.
a) Rút gọn P.
b)Tìm x để P >2
Bài 1 : Tính :
a) \(\dfrac{1}{5+2\sqrt{6}}-\dfrac{1}{5-2\sqrt{6}}\)
b) \(\sqrt{6+2\sqrt{5}}-\dfrac{\sqrt{15}-\sqrt{3}}{\sqrt{3}}\)
c) \(\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}:\dfrac{1}{\sqrt{16}}\)
d) \(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)
e) \(\dfrac{4}{1+\sqrt{3}}-\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}\)
f) \(\left(\dfrac{1}{2-\sqrt{5}}+\dfrac{2}{\sqrt{5}-\sqrt{3}}\right):\dfrac{1}{\sqrt{21-12\sqrt{3}}}\)
Bài 2 : Rút gọn :
a) \(\dfrac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\dfrac{1}{\sqrt{a}+\sqrt{b}}\)
b) \(\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right).\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
c) \(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
Rút gọn biểu thức:
C=\(\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right)\div\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)vớix\ge0,x\ne1\)
D=\(\left(\sqrt{x}+\dfrac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right)\div\left(\dfrac{x}{\sqrt{xy}+y}+\dfrac{y}{\sqrt{xy}-x}-\dfrac{x+y}{\sqrt{xy}}\right)\)
Lm nhanh giúp mk nhé!
rút gọn biểu thức
a) A=\(\dfrac{\sqrt{x}-3}{\sqrt{x-2}}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{x-3\sqrt{x}+2}vớix\ge0,x\ne4,x\ne1\)
b)\(\left(\dfrac{x+2}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right)\div\dfrac{\sqrt{x}-1}{2}vớix>0,x\ne1\)
Cho hai bt A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\)và B=\(\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}+2}{x-4}\)
a) rút gọn B
b)tìm x thuộc Z để C= A(B-2) có giá trị nguyên