Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
trung dũng trần

rút gọn các phân thức

a) \(\frac{x^2-16}{4x-x^2}\left(x\ne0,x\ne4\right)\) d) \(\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ab}\)

b) \(\frac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}\left(x\ne y\right)\) c) \(\frac{\left(x+y\right)^2-z^2}{x+y+z}\left(x+y+z\ne0\right)\)

e)\(\frac{a^3+b^3+c^3}{a^2+b^2+c^2-ab-bc-ac}\)

Akai Haruma
22 tháng 2 2020 lúc 22:26

Lời giải:

a) \(\frac{x^2-16}{4x-x^2}=\frac{(x-4)(x+4)}{x(4-x)}=\frac{x+4}{-x}\)

b) \(\frac{5(x-y)-3(y-x)}{10(x-y)}=\frac{5(x-y)+3(x-y)}{10(x-y)}=\frac{8(x-y)}{10(x-y)}=\frac{8}{10}=\frac{4}{5}\)

c)

\(\frac{(x+y)^2-z^2}{x+y+z}=\frac{(x+y-z)(x+y+z)}{x+y+z}=x+y-z\)

d)

Biểu thức không rút gọn được

e)

\(\frac{a^3+b^3+c^3}{a^2+b^2+c^2-ab-bc-ac}=\frac{(a+b)^3-3ab(a+b)+c^3}{a^2+b^2+c^2-ab-bc-ac}=\frac{(a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b)}{a^2+b^2+c^2-ab-bc-ac}\)

\(=\frac{(a+b+c)(a^2+b^2+c^2-ac-bc+2ab)-3ab(a+b+c)+3abc}{a^2+b^2+c^2-ab-bc-ac}\)

\(=\frac{(a+b+c)(a^2+b^2+c^2-ab-bc-ac)+3abc}{a^2+b^2+c^2-ab-bc-ac}=a+b+c+\frac{3abc}{a^2+b^2+c^2-ab-bc-ac}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
lê nhật duẫn
Xem chi tiết
Bí Mật
Xem chi tiết
MInemy Nguyễn
Xem chi tiết
trung dũng trần
Xem chi tiết
kiều trang
Xem chi tiết
Minatozaki Sana
Xem chi tiết
lê nhật duẫn
Xem chi tiết
MInemy Nguyễn
Xem chi tiết
♡ ♡ ♡ ♡ ♡
Xem chi tiết