Lời giải:
\(A=x-4-\sqrt{16-8x^2+x^4}=x-4-\sqrt{4^2-2.4.x^2+(x^2)^2}\)
\(=x-4-\sqrt{(x^2-4)^2}=x-4-|x^2-4|\)
Nếu \(2\leq x< 4\):
\(|x^2-4|=|x-2||x+2|=(x-2)(x+2)=x^2-4\)
\(\Rightarrow A=x-4-(x^2-4)=x-x^2\)
Nếu \(-2\leq x< 2\):
\(|x^2-4|=|x-2||x+2|=(2-x)(x+2)=4-x^2\)
\(\Rightarrow A=x-4-(4-x^2)=x^2+x-8\)
Nếu $x< -2$:
\(|x^2-4|=|x+2||x-2|=(-x-2)(2-x)=x^2-4\)
\(\Rightarrow A=x-4-(x^2-4)=x-x^2\)
Lời giải:
\(A=x-4-\sqrt{16-8x^2+x^4}=x-4-\sqrt{4^2-2.4.x^2+(x^2)^2}\)
\(=x-4-\sqrt{(x^2-4)^2}=x-4-|x^2-4|\)
Nếu \(2\leq x< 4\):
\(|x^2-4|=|x-2||x+2|=(x-2)(x+2)=x^2-4\)
\(\Rightarrow A=x-4-(x^2-4)=x-x^2\)
Nếu \(-2\leq x< 2\):
\(|x^2-4|=|x-2||x+2|=(2-x)(x+2)=4-x^2\)
\(\Rightarrow A=x-4-(4-x^2)=x^2+x-8\)
Nếu $x< -2$:
\(|x^2-4|=|x+2||x-2|=(-x-2)(2-x)=x^2-4\)
\(\Rightarrow A=x-4-(x^2-4)=x-x^2\)