\(\dfrac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}=\dfrac{\sqrt{a^3}-\sqrt{b^3}}{\sqrt{a}-\sqrt{b}}\)
\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\sqrt{a}-\sqrt{b}}\)
\(=a+\sqrt{ab}+b\)
\(\dfrac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}=\dfrac{\sqrt{a^3}-\sqrt{b^3}}{\sqrt{a}-\sqrt{b}}\)
\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\sqrt{a}-\sqrt{b}}\)
\(=a+\sqrt{ab}+b\)
Rút gọn các biểu thức :
a) \(\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\dfrac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}\) với \(a\ge0,b\ge0;a\ne b\)
b) \(\dfrac{a-b}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\) với \(a\ge0,b\ge0;a\ne b\)
\(\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\dfrac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2=1\) (\(a\ge0,b\ge0,a\ne b\))
Cho các biểu thức sau (giải chi tiết)
A = \(\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}\) và B = \(\dfrac{2x+3\sqrt{x}+9}{x-9}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\) với \(x\ge0;x\ne9\)
a) Rút gọn biểu thức B
b) Cho \(P=\dfrac{A}{B}\). Tìm GTNN của P
Cho các biểu thức sau:
A = \(\dfrac{x+\sqrt{x}+10}{x-9}-\dfrac{1}{\sqrt{x}-3}\) và B = \(\dfrac{1}{\sqrt{x}-3}\) với \(x\ge0;x\ne9\)
a) Rút gọn biểu thức \(M=\dfrac{A}{B}\)
b) Tìm GTNN của biểu thức M
Cho A = \(\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}+2}{\sqrt{x}-2}+\dfrac{2x+8}{2x-4}\) và B = \(\dfrac{2}{\sqrt{x}-6}\) với \(x\ge0;x\ne4;x\ne36\)
a) Rút gọn các biểu thức A
b) Tìm GTNN của biểu thức P = A : B
cho biểu thức
A=\(\left(\dfrac{x+4}{3x+6}-\dfrac{1}{x^2+4x+4}\right)\left(1+\dfrac{x-1}{x+5}\right)\)
a, rút gọn
b, tìm x để A có giá trị là số nguyên
bài 2 : rút gọn các biểu thức sau:
a,\(\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)(\(a\ge0;a\ne4\)
b, \(\left(\dfrac{a+b+2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\sqrt[]{a}\right)\left(\dfrac{a-b}{\sqrt{a}+\sqrt{b}}\right)^2\)
help me
B2: cho :
\(P=\left(\dfrac{1}{\sqrt{1}-1}+\dfrac{\sqrt{x}}{x-1}\right)\div\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-1\right)\) với \(x\ge0,x\ne1\)
a, Rút gọn P
b, Tìm x để P = \(\dfrac{3}{2}\)
Chứng minh các đẳng thức sau:
a) \(\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)=1-x\)
(Với \(x\ge0;x\ne1\))
b) \(\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}+\dfrac{a-b}{\sqrt{a}-b}=2\sqrt{a}\)
(Với a>0; b>0; \(a\ne b\))
cho biểu thức
A=\(\dfrac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}+1}+\dfrac{5+3\sqrt{5}}{\sqrt{5}}-\left(\sqrt{5}+3\right)\)
B=\(\dfrac{1}{3-\sqrt{x}}+\dfrac{\sqrt{x}}{3+\sqrt{x}}-\dfrac{x+9}{x-9}\) với \(\left(x\ne9,x\ge0\right)\)
a, Rút gọn biểu thức A
b, tìm các giá trị của x để B>A