Cho biểu thức A= \(\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
P = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
a, Rút gọn biểu thức A
b, Tìm các giá trị để \(\dfrac{P}{A}\left(x-1\right)=0\)
\(A=\left(\dfrac{x+2}{x-\sqrt{x}-2}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{1-\sqrt{x}}{\sqrt{x}-2}\right)\left(1-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)đk:x>=0;x khác 4. rút gọn biểu thức A
\(A=\left(\dfrac{x+2}{x-\sqrt{x}-2}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{1-\sqrt{x}}{\sqrt{x}-2}\right)\left(1-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)đk:x>=0;x khác 4). rút gọn biểu thức A
Cho biểu thức:
\(A=\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(\dfrac{x-2}{x-\sqrt{x}-2}-1\right)\)
a) Rút gọn A.
b) Tìm x để P=2A - \(\dfrac{1}{x}\)đạt GTLN.
1.cho biểu thức A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{5}{x+\sqrt{x}-6}-\dfrac{1}{\sqrt{x}-2}\)với(x≥0;x≠4)
a)rút gọn A
b)tính A khi x=6+4\(\sqrt{2}\)
2.cho biểu thức P=\(\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}-\dfrac{8x}{x-4}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}+3\right)\)với x≥0;x≠1;x≠4
a)rút gọn P
b)tìm x để P=-4
Cho biểu thức A:
\(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+1+\sqrt{x}}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2\sqrt{x}}\)
a) Rút gọn A.
b) cmr: \(A< \dfrac{2}{3}\)
cho biểu thức P=\(\left(\dfrac{1}{\sqrt{x}-\sqrt{x-1}}-\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\dfrac{2}{\sqrt{2}-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)
a,rút gọn biểu thức
b,tính giá trị của biểu thức với x=3 - \(2\sqrt{2}\)
Bài 1:Cho biểu thức B= \(\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-2}\) (x > 0, x≠ 9)
a) Rút gọn B
c) Giá trị x để B = \(\dfrac{3}{2}\)
Bài 2: Một khu vườn có chuvi = 46 m, nếu tăng chiều dài 5m và giảm chều rộng 3m thì hình chữ nhật mới có chiều dài gấp 4 lần chiều rộng. Tính diện tích khu vườn hình chữ nhật ban đầu
(mink đag cần rất gấp)
A= 1
B = \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)\) : \(\dfrac{2\sqrt{x}}{x+2\sqrt{x}}\)với x > 0
a) Rút gọn B
b) Tìm x để B>2A