\(A=\left(\dfrac{1+\sqrt{1-a}}{1-a+\sqrt{1-a}}+\dfrac{1+\sqrt{1+a}}{1+a+\sqrt{1+a}}\right)\cdot\dfrac{a^2-1}{2}+1\)
\(=\left(\dfrac{1+\sqrt{1-a}}{\sqrt{1-a}\cdot\left(\sqrt{1-a}+1\right)}+\dfrac{1+\sqrt{1+a}}{\sqrt{1-a}\cdot\left(\sqrt{1+a}+1\right)}\right)\cdot\dfrac{a^2-1}{2}+1\)
\(=\left(\dfrac{1}{\sqrt{1-a}}+\dfrac{1}{\sqrt{1+a}}\right)\cdot\dfrac{a^2-1}{2}+1\)
\(=\dfrac{\sqrt{1+a}+\sqrt{1-a}}{\sqrt{\left(1-a\right)\cdot\left(1+a\right)}}\cdot\dfrac{a^2-1}{2}+1\)
\(=\dfrac{\sqrt{1+a}+\sqrt{1-a}}{\sqrt{1-a^2}}\cdot\dfrac{a^2-1}{2}+1\)