a: \(P=\dfrac{\sqrt{3}\left(2+\sqrt{3}\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}-1\right)}{1}-\sqrt{3}-\sqrt{2}\)
\(=2+\sqrt{3}+2-\sqrt{2}-\sqrt{3}-\sqrt{2}\)
\(=4-2\sqrt{2}\)
b: \(N=\left(1-\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}\right)\left(\dfrac{-\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}-1\right)\)
\(=\left(1-\sqrt{5}\right)\left(-\sqrt{5}-1\right)\)
\(=\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)=5-1=4\)
a) \(P=\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+\sqrt{3}\right)\)
\(P=\dfrac{\sqrt{3}\cdot\left(\sqrt{3}+2\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\cdot\left(\sqrt{2}+1\right)}{\sqrt{2}+1}-\sqrt{2}-\sqrt{3}\)
\(P=\sqrt{3}+2+\sqrt{2}-\sqrt{2}-\sqrt{3}\)
\(P=2\)
b) \(N=\left(1-\dfrac{5+\sqrt{5}}{1+\sqrt{5}}\right)\left(\dfrac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
\(N=\left[1-\dfrac{\sqrt{5}\left(1+\sqrt{5}\right)}{1+\sqrt{5}}\right]\left[1+\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right]\)
\(N=\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)\)
\(N=1^2-\left(\sqrt{5}\right)^2\)
\(N=-4\)
c) \(Q=\left(\dfrac{5+2\sqrt{5}}{2-\sqrt{5}}-2\right)\left(\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}-2\right)\)
\(Q=\left[\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}+2\right]\left[\dfrac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}+3}-2\right]\)
\(Q=\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)\)
\(Q=\left(\sqrt{5}\right)^2-2^2\)
\(Q=1\)