a) \(A=\sqrt{a-2-2\sqrt{a-3}}-\sqrt{a+1-4\sqrt{a-3}}=\sqrt{\left(a-3\right)-2\sqrt{a-3}+1}-\sqrt{\left(a-3\right)-4\sqrt{a-3}+4}=\sqrt{\left(\sqrt{a-3}-1\right)^2}-\sqrt{\left(\sqrt{a-3}-2\right)^2}\)Ta có 3≤a≤4\(\Rightarrow\left\{{}\begin{matrix}\sqrt{\left(\sqrt{a-3}-1\right)^2}=1-\sqrt{a-3}\\\sqrt{\left(\sqrt{a-3}-2\right)^2}=2-\sqrt{a-3}\end{matrix}\right.\)
Vậy A=\(1-\sqrt{a-3}-\left(2-\sqrt{a-3}\right)=1-\sqrt{a-3}-2+\sqrt{a-3}=-1\)b) B=\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\times\sqrt{2003-2\sqrt{2005-2\sqrt{2004}}}=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}\right)^2-2.2\sqrt{5}.3+9}}}\times\sqrt{2003-2\sqrt{2004-2\sqrt{2004}+1}}=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\times\sqrt{2003-2\sqrt{\left(\sqrt{2004}-1\right)^2}}=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\times\sqrt{2003-2\sqrt{2004}+2}=\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}+1}}\times\sqrt{2004-2\sqrt{2004}+1}\)
\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\times\sqrt{\left(\sqrt{2004}-1\right)^2}=\sqrt{\sqrt{5}-\sqrt{5}+1}\times\left(\sqrt{2004}-1\right)=\sqrt{1}\times\left(\sqrt{2004}-1\right)=\sqrt{2004}-1\)