Bài 1: Tính
1, \(A=\left(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\right).\left(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
2, \(B=\left(\frac{3\sqrt{125}}{15}-\frac{10-4\sqrt{6}}{\sqrt{5}-2}\right).\frac{1}{\sqrt{5}}\)
3, \(C=\left(\frac{\sqrt{1000}}{100}-\frac{5\sqrt{2}-2\sqrt{5}}{2\sqrt{5}-8}\right).\frac{\sqrt{10}}{10}\)
4, \(D=\frac{1}{\sqrt{49+20\sqrt{6}}}-\frac{1}{\sqrt{49-20\sqrt{6}}}+\frac{1}{\sqrt{7-4\sqrt{3}}}\)
5, \(E=\frac{1}{\sqrt{4-2\sqrt{3}}}-\frac{1}{\sqrt{7-\sqrt{48}}}+\frac{3}{\sqrt{14-6\sqrt{5}}}\)
6, \(F=\frac{1}{\sqrt{2}-\sqrt{3}}\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
7, \(G=\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}-\sqrt{11-2\sqrt{10}}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}+\sqrt{12+8\sqrt{2}}}}\)
Trục căn thức ở mẫu và rút gọn
a, (\(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\))(\(\sqrt{6} +11\))
b,(\(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\))(\(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\))
c,\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}\)- (\(\sqrt{2}+\sqrt{3}\))
d,(\(\frac{5-2\sqrt{5}}{2-\sqrt{5}}-2\))(\(\frac{5+3\sqrt{5}}{3+\sqrt{5}}-2\))
rút gọn biểu thức
a) \(\frac{3}{2+\sqrt{3}}+\frac{13}{4-\sqrt{3}}+\frac{6}{\sqrt{3}}\)
b) \(\left(\frac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\frac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
c) \(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{28-10\sqrt{3}}\)
d) \(\frac{3}{3+2\sqrt{3}}+\frac{3}{3-2\sqrt{3}}\)
e) \(\sqrt{20}-15\sqrt{\frac{1}{5}}+\sqrt{\left(1-\sqrt{5}\right)^2}\)
Bài tập:Rút gọn
1.\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
2. \(2\sqrt{27}-6\sqrt{\frac{4}{3}}+\frac{3}{5}\sqrt{75}\)
3. \(8\sqrt{3}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
4.\(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}\)
5.(\(\sqrt{12}+\sqrt{75}+\sqrt{27}\)):\(\sqrt{15}\)
6.\(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\frac{1}{3}}\)
Rút gọn biểu thức 1. \(D=\sqrt{5}-\sqrt{13-4\sqrt{9-4\sqrt{5}}}\)
2. \(B=2\sqrt{125}+\sqrt{\left(1-\sqrt{5}\right)^2}-\frac{4}{\sqrt{5}+1}\)
3.\(C=\frac{2}{\sqrt{3}+1}-\frac{1}{\sqrt{3}-2}+\frac{12}{\sqrt{3}+3}\)
rút gọn biểu thức
a.\(2\sqrt{80}+3\sqrt{45}-\sqrt{245}\)
b.\(\dfrac{3}{2+\sqrt{3}}+\dfrac{13}{4-\sqrt{3}}+\dfrac{6}{\sqrt{3}}\)
c.\(\left(\dfrac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
d.\(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{28-10\sqrt{3}}\)
Rút gọn biểu thức sau
\(a.\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}\)
\(b.\dfrac{\sqrt{\dfrac{5}{3}}+\sqrt{\dfrac{3}{5}}-2}{\sqrt{\dfrac{5}{3}}-\sqrt{\dfrac{3}{5}}}\)
\(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)
\(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)
\(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
\(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2^6\right)}\)
rút gọn:giải chi tiết hộ mình nha
rút gọn A)\(\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5-3}\right)^2}}\)
B) \(\sqrt{6+2\sqrt{5-\sqrt{\left(2\sqrt{3+1}\right)^2}}}\)
C) \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)