Lời giải:
$x-y=2\Rightarrow x=y+2$. Thay vào biểu thức $Q$ ta có:
$Q=(x-y)^2+xy=4+xy=4+y(y+2)=y^2+2y+4=(y+1)^2+3\geq 3$
Vậy $Q_{\min}=3$.
Giá trị này đạt được khi $y+1=0\Leftrightarrow y=-1; x=1$
Lời giải:
$x-y=2\Rightarrow x=y+2$. Thay vào biểu thức $Q$ ta có:
$Q=(x-y)^2+xy=4+xy=4+y(y+2)=y^2+2y+4=(y+1)^2+3\geq 3$
Vậy $Q_{\min}=3$.
Giá trị này đạt được khi $y+1=0\Leftrightarrow y=-1; x=1$
x6 - x3 + x2 - x + 1
Tìm nghiệm của đa thức trên
Tìm nghiệm của các đa thức sau
a)m(x)= x2 +7x-8
b) n(x)= 5x2+9x+4
Tính giá trị biểu thức A
A=\(^{x^3+2xy\left(x+y\right)+y^3+x^2+y^2+xy+2}\)
Biết \(x+y=-1\)
mng giúp e vs ạ. em cảm ơn!
a). Khi nào số a được gọi là nghiệm của đa thức P(x).
b). Cho P(x) = x4 + 2x2 + 1, chứng tỏ rằng P(x) không có nghiệm.
c). Tính giá trị của biểu thức 16x2y5 – 2x3y2 tại x = ½ và y= -1
1. Đơn thức nào sau đây đồng dạng vs đơn thức -3xy2:
A. -3x2y B. (-3xy)y C. -3(xy)2 D. -3xy
2. Đơn thức -\(\frac{1}{3}\)y2z49x3y có bậc là:
A. 6 B. 8 C. 10 D. 12
3. Bậc của đa thức Q = x3 - 7x4y + xy3 - 11 là:
A. 7 B. 6 C. 5 D. 4
4. Giá trị x = 2 là nghiệm của đa thức:
A. f(x) = 2 + x B. f(x) = x2 - 2 C. f(x) = x - 2 D. f(x) = x(x - 2)
Bài 3: Cho x+y-2=0. Tính giá trị của các đa thức sau:
a, M=\(x^3\)+\(x^2\) y-\(2x^2\)-xy-\(y^2\)+3y+x-1
b, N=\(x^3\)-\(2x^2\)-\(xy^2\)+2xy+2y+2x-2
Bài 1: a) Cho A = x2y và B = xy2 , biết x, y ∈ Z và x+y ⋮13
CM A + B ⋮ 13
b) Cho \(\frac{x}{3}=\frac{y}{5}\)
Tính giá trị của \(A=\frac{5x^2+3y^2}{10x^2-3y^2}\)
c) Tìm GTNN của: \(|x|+x+2019\)
thu gọn đa thức
a) (\(4x^2-3xy+y^2\))+(-\(x^2-xy+2y^2\))-(4\(^{x^2}\)\(-3y^2\))
Cho P= \(\dfrac{5}{7}x^5y-xy+y^2+2\).Tìm Q sao cho P+Q là đa thức không