Vì \(\widehat {FEM} = \widehat {EMN}( = 40^\circ )\)
Mà 2 góc này ở vị trí so le trong
\( \Rightarrow \) EF // NM ( Dấu hiệu nhận biết hai đường thẳng song song)
Vì \(\widehat {FEM} = \widehat {EMN}( = 40^\circ )\)
Mà 2 góc này ở vị trí so le trong
\( \Rightarrow \) EF // NM ( Dấu hiệu nhận biết hai đường thẳng song song)
a) Cho hình 3.19, biết \(\widehat {{A_2}} = 40^\circ ;\widehat {{B_4}} = 40^\circ \). Em hãy cho biết số đo các góc còn lại.
b) Các cặp góc A1 và B4; A2 và B3 được gọi là các cặp góc trong cùng phía. Tính tổng: \(\widehat {{A_1}} + \widehat {{B_4}};\widehat {{A_2}} + \widehat {{B_3}}\).
Quan sát hình 3.26, giải thích vì sao AB // DC.
Trên Hình 3.18, cho biết hai góc so le trong A1 và B3 bằng nhau và bằng \(60^\circ \).
1. Quan sát Hình 3.22 và giải thích vì sao AB // CD.
2. Tìm trên Hình 3.23 hai đường thẳng song song với nhau và giải thích vì sao chúng song song?
Trên Hình 3.18, cho biết hai góc so le trong A1 và B3 bằng nhau và bằng \(60^\circ \).
Chọn hai góc đồng vị rồi tính và so sánh hai góc đó.
Dùng góc vuông hay góc 30\(^\circ \)của êke (thay cho góc 60\(^\circ \)) để vẽ đường thẳng đi qua và song song với đường thẳng a cho trước.
Quan sát hình 3.24.
a) Tìm một góc ở vị trí so le trong với góc MNB.
b) Tìm một góc ở vị trí đồng vị với góc ACB.
c) Kể tên một cặp góc trong cùng phía.
d) Biết MN//BC, em hãy kể tên ba cặp góc bằng nhau trong hình vẽ
Cho đường thẳng a và điểm A nằm ngoài đường thẳng a. Để vẽ đường thẳng b đi qua A và song song với a, ta có thể sử dụng góc nhọn \(60^\circ \) của êke để vẽ như sau:
Tại sao khi vẽ như trên ta lại khẳng định được hai đường thẳng a và b song song với nhau.
Cho đường thẳng mn cắt đường thẳng xy và uv lần lượt tại hai điểm P và Q (H.3.17).Em hãy kể tên:
a) Hai cặp góc so le trong
b) Bốn cặp góc đồng vị.