P=\(\left(\dfrac{2\left(a+b\right)}{\sqrt{a^3}-2\sqrt{2b^3}}-\dfrac{\sqrt{a}}{a+\sqrt{2ab}+2b}\right)\left(\dfrac{\sqrt{a^3}+2\sqrt{2b^3}}{2b+\sqrt{2ab}}-\sqrt{a}\right)\)
a) Tìm điều kiện của a và b để biểu thức P xác định. Rút gọn P
b) Biết \(a=1+\dfrac{\sqrt{3}}{2}\) và \(b=\dfrac{1}{2}-\dfrac{\sqrt{3}}{4}\). Tính giá trị biểu thức P
a, \(ĐKXĐ:a;b>0;a\ne2b\\ \)
Xét: \(\dfrac{2\left(a+b\right)}{\sqrt{a^3}-2\sqrt{2b^3}}-\dfrac{\sqrt{a}}{a+\sqrt{2ab}+2b}=\dfrac{2\left(a+b\right)}{\left(\sqrt{a}-\sqrt{2b}\right)\left(a+\sqrt{2ab}+2b\right)}-\dfrac{\sqrt{a}}{a+\sqrt{2ab}+2b}=\dfrac{a+2b+\sqrt{2ab}}{\left(\sqrt{a}-\sqrt{2b}\right)\left(a+\sqrt{2ab}+2b\right)}=\dfrac{1}{\sqrt{a}-\sqrt{2b}}\)\(\dfrac{\sqrt{a^3}+2\sqrt{2b^3}}{2b+\sqrt{2ab}}-\sqrt{a}=\dfrac{\left(\sqrt{a}+\sqrt{2b}\right)\left(a-\sqrt{2ab}+2b\right)}{\sqrt{2b}\left(\sqrt{a}+\sqrt{2b}\right)}-\sqrt{a}=\dfrac{\left(\sqrt{a}-\sqrt{2b}\right)^2}{\sqrt{2b}}\)\(\Rightarrow P=\dfrac{\sqrt{a}-\sqrt{2b}}{\sqrt{2b}}=\sqrt{\dfrac{a}{2b}}-1\)
b, Tự lm nhé.