a) rút gọn biểu thức P
b) tìm a để P= 1/2
a) rút gọn biểu thức P
b) tìm a để P= 1/2
A= \(\left(\dfrac{a-1}{\sqrt{a}-1}-2\right)\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}+1\right)\) ĐK: (a≥0, a≠1)
B= \(\left(\dfrac{a\sqrt{a}-a}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\dfrac{a+2}{a-2}\) ĐK: (a>0, a≠0, a≠2)
C= \(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{a}{a-1}\right):\left(\sqrt{a}-\dfrac{\sqrt{a}}{\sqrt{a}+1}\right)\) ĐK: (a>0, a≠1)
D= \(\dfrac{a+\sqrt{a}}{\sqrt{a}}+\dfrac{a+4}{\sqrt{a}+2}\) ĐK: (a>0)
E= \(\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}+\dfrac{1-\sqrt{a}}{a+\sqrt{a}}\right)\) ĐK: (a>0, a≠1)
Cho \(A=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\left(\dfrac{1}{2\sqrt{x}}-\dfrac{\sqrt{x}}{2}\right)^2\left(x>0,x\ne1\right)\)
a, Rýt gọn A
b, Tìm x để \(\dfrac{A}{\sqrt{x}}>3\)
Cho \(A=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(\dfrac{2\left(x-2\sqrt{x}+1\right)}{x-1}\right)\)
Tìm x nguyên để A có giá trị nguyên ĐKXĐ: \(x>0; x\ne1\)
Chứng minh:
\(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)=1-a\) với \(a\ge0,a\ne1\)
A= \(\dfrac{7\sqrt{a}}{a-9}-\left(\dfrac{\sqrt{a}}{\sqrt{a}-3}-\dfrac{\sqrt{a}-1}{\sqrt{a}+3}\right)\) ĐK:(a≥0, a≠9)
B= \(\left(\dfrac{1}{\sqrt{a}-3}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-3}\right)\) ĐK:(a≥0, a≠9)
C= \(\left(\dfrac{a\sqrt{a}}{\sqrt{a}-1}-\dfrac{a^2}{a\sqrt{a}-a}\right).\left(\dfrac{1}{a}-2\right)\) ĐK:(a>0, a≠1)
D= \(\dfrac{a\sqrt{a}+1}{a-1}-\dfrac{a-1}{\sqrt{a}+1}\) ĐK:(a≥0, a≠1)
E= \(\dfrac{a}{a-4}+\dfrac{1}{\sqrt{a}-2}+\dfrac{1}{\sqrt{a}+2}\) ĐK:(a≥0, a≠4)
Giúp mìnk với nha !!!
rút gon biểu thức
B = \(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
với a > 0 , a\(\ne1,a\ne4\)
giải nhanh giúp e ạ mai e thi r huhu
Cho \(P=\dfrac{\sqrt{a}\left(1-a\right)^2}{1+a}:\left[\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\right]\)
Tìm a để 4P đạt giá trị nguyên
Rút gọn
a) với x>0 , x\(\ne\)1
\(\dfrac{\left(\sqrt{x^2+4}-2\right)\left(\sqrt{x^2+4}+2\right)\left(x+\sqrt{x}+1\right)\sqrt{x-2\sqrt{x}+1}}{x\left(x\sqrt{x}-1\right)}\)
b) với a>0,a\(\ne\)4
\(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right)\left(\sqrt{a}-\dfrac{4}{\sqrt{a}}\right)\)
c)\(\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right)\left(1-\dfrac{1}{\sqrt{a}}\right)\) với a>0 ,a\(\ne\)1
d)\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\) với x>1
Chứng minh:
\(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2=1\) với \(a\ge0,a\ne1\)