Trong không gian Oxyz, viết phương trình đường thẳng :
a) Qua hai điểm M (1;0;1) và N (3;2;-1)
b) Qua điểm A (0;-1;3) và song song với đường thẳng chứa hai điểm B (1;0;1) , C (-1;1;2)
Viết phương trình tham số của đường thẳng d trong mỗi trường hợp sau :
a) d đi qua điểm \(M\left(5;4;1\right)\) và có vectơ chỉ phương \(\overrightarrow{a}=\left(2;-3;1\right)\)
b) d đi qua điểm \(A\left(2;-1;3\right)\) và vuông góc với mặt phẳng \(\left(\alpha\right)\) có phương trình \(x+y-z+5=0\)
c) d đi qua điểm \(B\left(2;0;-3\right)\) và song song với đường thẳng \(\Delta:\left\{{}\begin{matrix}x=1+2t\\y=-3+3t\\z=4t\end{matrix}\right.\)
d) d đi qua 2 điểm \(P\left(1;2;3\right)\) và \(Q\left(5;4;4\right)\)
Viết phương trình tham số, phương trình chính tắc của đường thẳng \(\Delta\) trong các trường hợp sau :
a) \(\Delta\) đi qua điểm \(A\left(1;2;3\right)\) và có vectơ chỉ phương \(\overrightarrow{a}=\left(3;3;1\right)\)
b) \(\Delta\) đi qua điểm \(B\left(1;0;-1\right)\) và vuông góc với mặt phẳng \(\left(\alpha\right):2x-y+z+9=0\)
c) \(\Delta\) đi qua điểm \(C\left(1;2;3\right)\) và \(D\left(2;1;4\right)\)
Cho A(1,2,-3), B(3,0,1) , denta :\(\left\{{}\begin{matrix}x=-1+2t\\y=2-t\\z=t\end{matrix}\right.\)
(P): x+y+z-3=0
a) Lập phương trình mặt phẳng (Q) đi qua điểm A và chứa đường thẳng denta
b) Lập phương trình mặt phẳng (Q) đi qua điểm A và song song với đường thẳng denta và vuông góc với mặt phẳng (P)
c) Lập phương trình đường thẳng d nằm trên mặt phẳng (P) cắt và vuông góc với denta
d) Lập phương trình đường thẳng d đi qua điểm A cắt denta tại M, cắt mặt phẳng (P) tại N sao cho M là trung điểm AN
Điểm A(0;1;2) và d:\(\left\{{}\begin{matrix}x=1+t\\y=2-2t\\z=1\end{matrix}\right.\). Đường thẳng (△) đi qua A và cắt d tại điểm B sao cho AB = 2. Viết phương trình tham số của đường thẳng △. ( Biết tọa độ của B là các giá trị nguyên)
Trong không gian Oxyz, viết phương trình đường thẳng :
a) Qua điểm A (1;2-1) và vuông góc với mặt phẳng (P) : 3x - 2y + 2z + 1 = 0
b) Qua điểm A(1;-2;3) và song song với hai mặt phẳng (P) : x + y + z + 1 = 0, (P') : x - y + z - 2 = 0
c) Qua điểm M(-1;1;3) và vuông góc với hai đường thẳng Δ : x-1/3 = y+3/2 = z-1/1 , Δ' : x+1/1 = y/3 = z/-2
Cho mặt phẳng \(\left(\alpha\right):2x+y+z-1=0\) và đường thẳng \(d:\dfrac{x-1}{2}=\dfrac{y}{1}=\dfrac{z+2}{-3}\)
Gọi M là giao điểm của d và \(\left(\alpha\right)\), hãy viết phương trình của đường thẳng \(\Delta\) đi qua M vuông góc với d và nằm trong \(\left(\alpha\right)\) ?
Tính khoảng cách từ điểm \(A\left(1;0;1\right)\) đến đường thẳng \(\Delta:\dfrac{x-1}{2}=\dfrac{y}{2}=\dfrac{z}{1}\)