Cho đường thẳng d la : y=2mx+3-m-x
Xác định m để:
a) Đường thẳng d qua gốc tọa độ
b)Đường thẳng d song song với đường thẳng 2y-x=5
c)Đường thẳng d tạo với Ox một góc nhọn
đ)Đường thẳng d tạo với Ox một góc tù. Đường thẳng d cắt Ox tại điểm có hoành độ 2
f)Đường thẳng d cắt đồ thị hàm số y = 2x-3 tại một điểm có hoành độ là 2
g)Đường thẳng d cắt đồ thị hàm số y=-x+7 tại một điểm có tung độ y=4
h)Đường thẳng d đi qua giao điểm của hai đường thẳng 2x-3y=-8 và y=-x+1
Cho đường thẳng d la : y=2mx+3-m-x
Xác định m để:
a) Đường thẳng d qua gốc tọa độ
b)Đường thẳng d song song với đường thẳng 2y-x=5
c)Đường thẳng d tạo với Ox một góc nhọn
đ)Đường thẳng d tạo với Ox một góc tù. Đường thẳng d cắt Ox tại điểm có hoành độ 2
f)Đường thẳng d cắt đồ thị hàm số y = 2x-3 tại một điểm có hoành độ là 2
g)Đường thẳng d cắt đồ thị hàm số y=-x+7 tại một điểm có tung độ y=4
h)Đường thẳng d đi qua giao điểm của hai đường thẳng 2x-3y=-8 và y=-x+1
Câu 2: Cho đường thẳng y= 2mx + 3-m-x (d). Xác định m để:
a, Đường thẳng d qua gốc toạ độ
b, Đường thẳng d // với đường thằng 2y-x=5
c, Đường thẳng d tạo với Ox một góc nhọn
d, Đường thẳng d tạo với Ox một góc tù
e, Đường thẳng d cắt Ox tại điểm có hoành độ 2
f, Đường thẳng d cắt đồ thị HS y= 2x-3 tại một điểm có hoành độ là 2
g, Đường thẳng d cắt đồ thị hàm số y= -x +7 tại một điểm có tung độ y=4
h, Đường thẳng d đi qua giao điểm của 2 đường thẳng 2x - 3y =-8 và y=-x+1
Đề ôn tập 1
Câu 1 a(1.5đ) , Tính giá trị biểu thức \(M=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)\left(1-\frac{1}{1+2+3+4}\right)...\left(1-\frac{1}{1+2+3+4+...+2020+2021}\right)\)
b(1.5đ), Cho 3 số thực x,y,z thỏa mãn 2xy+2yz+2zx=0 . Tính giả trị biểu thức S = \(\frac{yz}{8x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}\left(x,y,z\ne0\right)\)
Câu 2 a(3đ), Giải phương trình \(2x^2+5x-1=7\sqrt{x^3-1}\)
b, (3đ)Giải hệ phương trình \(\left\{{}\begin{matrix}\sqrt{x+1}+\sqrt{2-y}=\sqrt{3}\\\sqrt{y+1}+\sqrt{2-x}=\sqrt{3}\end{matrix}\right.\)
Câu 3 Cho tam giác ABC nhọn ,trực tâm H . Qua H kẻ 1 đường thẳng bất kì cắt AB ,AC tại D và E sao cho HD=HE. Vẽ MH vuông góc DE tại H ( M thuộc BC) . Chứng minh a, AH.MH=HE.MB (1,5đ) b, M là trung điểm BC (1.5đ)
Câu 4 a,(1,5đ) Tìm số tự nhiên n để A là số chính phương biết \(n^4+2n^3+2n^2+n+7\)
b,(1,5đ) Tìm các cặp số nguyên (x;y) thỏa \(x^4+2x^2=y^3\)
Câu 5 (2đ) Cho điểm A nằm ngoài đường tròn (O;R) .Vẽ các tiếp tuyến AB,AC với đường tròn (O) với B,C là các tiếp điểm . Vẽ cát tuyến ADE của đường tròn (O) và AD<AE tia AD nằm giữa 2 tia AO và AB . Gọi F là điểm đối xứng của D qua AO và H là giao điểm của EF và BC . Chứng minh A,O,H thẳng hàng .
Câu 6 a,(2đ) Cho x ,y,z>0 và \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2020\)
Tính GTNN của D = \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
b,(1đ) Chứng minh rằng với mọi số nguyên n thì phân số B là phân số tối giản biết B = \(\frac{n^3+2n}{n^4+3n^2+1}\)
Cho hàm số \(y=2x+4\) có đồ thị là (d1) và hàm số \(y=-x+1\) có đồ thị là (d2)
a. Vẽ (d1) và (d2) trên cùng một mặt phẳng toạ độ Oxy
b. Xác định các hệ số a, b của đường thẳng \(y=ax+b\) (d3). Biết (d3) song song với (d1) và (d3) cắt (d2) tại một điểm có hoành độ bằng 2
Đề 1
Bài 1 : không sử dụng máy tính cầm tay :
a, giải phương trình và hệ phương trình sau
1) \(5x^2-7x=0\) 2) \(\left\{{}\begin{matrix}2x-3y=-13\\3x+5y=9\end{matrix}\right.\)
b, rút gọn biểu thức P= \(\frac{\sqrt{5}}{\sqrt{5}-2}-2\sqrt{5}\)
Bài 2 : cho hàm số y= \(ax^2\)
a, xác định hệ số a biết rằng đồ thị của hàm số đã cho đi qua điểm M(-2;8)
b, vẽ trên cùng một mặt phẳng tọa độ đồ thị (P) của hàm số đã cho với giá trị a vừa tìm đc và đường thẳng (d) đi qua M(-2;8) có hệ số góc bằng -2. Tìm tọa độ giao điểm khác M của (P) và (d).
Bài 3 : cho tam giác ABC vuông tại A và AC>AB ,D là một điểm trên cạnh AC sao cho CD<AD. Vẽ đường trong (D) tâm D và tiếp xúc với BC tại E. Từ B vẽ tiếp tuyến thứ 2 của đường tròn (D) với F là tiếp điểm khác E.
a, Chứng minh rằng năm điểm A,B,E,D,F cùng thuộc một đường tròn .
b, Gọi M là trung điểm của BC . Đường thẳng BF lần lượt cắt AM,AE,AD theo thứ tự tại các điểm N,K,I. Chứng minh \(\frac{IK}{IF}=\frac{AK}{AF}\) . suy ra : IF.BK=IK.BF
c, chứng minh rằng tam giác ANF là tam giác cân.
giúp mình đề này với
a, cho hàm số y = (a - 2) x + 2b có đồ thị là đường thẳng (d). Tìm a và b biết đường thẳng (d) đi qua điểm A (3;1) và song song với đường thẳng (d') : y = x + 3?
b, tính góc tạo bởi đường thẳng (d) với tia Ox
cho hàm số bậc nhất y=(2m-1)x+k+2
a.tìm đk của m để hàm số trên đồng biến
b.tìm m và k biết rằng đồ thị hàm số trên song song với đường thẳng y=-x+1 và đi qua điểm A(1;3)
1 .A/Cho tam giác DEF vuông tại D, đường cao DK. biết fk = 2 cm và EF = 8 cm .Tính DK, EK,DK ?
B/bóng của cây đèn trên mặt đất là 1,2 m ,Tia Nắng Mặt Trời Chiếu xiên một góc 30 độ so với mặt đất tính chiều cao của cây?
C/ một cột đèn cao 7m có bóng đèn trên mặt đất dài 4 m .hãy tính góc mà tia sáng mặt trời tạo với mặt đất (làm tròn đến phút)
2. Cho đường tròn Tâm O ,điểm A nằm bên ngoài đường tròn. kẻ các tiếp tuyến AM, An với đường tròn (M, N là tiếp tiếp điểm)
A/Chứng minh rằng OA vuông góc với MN
B/Vẽ đường kính NOC Chứng minh rằng MC song song với A0
C/Tính độ dài các cạnh của tam giác AMN biết OM = 3 cm, OA = 5cm
3/cho nửa đường tròn tâm O, đường kính AB = 2R và dây AC = R Gọi K là trung điểm của BC qua B vẽ tiếp tuyến BC với (O) ,tiếp tuyến này cắt tia OK tại D A/chứng minh rằng DC là tiếp tuyến của (O)
B/tia OD cắt (O) ở M chứng minh rằng tứ giác OBMC là hình thoi
C/vẽ CH vuông góc với AB tại H và gọi I là trung điểm của CH tiếp tại A của (O) cắt tia BI tại E Chứng minh rằng E,C,D đi thẳng hàng
A /Với giá trị nào của m thì hàm số bậc nhất y = (m - 1 )x + 3 là hàm số đồng biến trên R ?
B/ Với giá trị nào của k thì hàm số bậc nhất y=(5-k)x+1 là hàm số nghịch biến trên R?
C/vẽ đồ thị hàm số y = (2m -5)x+5 với m=4
D/ Với giá trị nào của m thì hàm số y = 3 x + 5 và y=3 x -3 m + 1 cắt nhau tại 1 điểm trên trục tung?
E/ xác định k của m để hai đường thẳng sau đây trùng nhau y=kx+(m-2), <k khác 0>;y=(5-k)x +(4-m) , <k khác 5>
Chào mọi người! Em vừa thi tuyển sinh 10 xong và dưới đây là đề tuyển sinh Toán của trường em vào, mong mọi người giúp em giải với ạ!
Em cảm ơn rất nhiều ạ!
Câu 1: (2,0 điểm)
1. Giải các phương trình sau:
a) \(5\left(x+1\right)=3x+7\) ; b) \(x^4-x^2-12=0\)
2. Cho hệ phương trình: \(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\)
a) Giải hệ phương trình khi m =1.
b) Tìm m để hệ có nghiệm (x;y) thoả mãn: \(x^2+y^2=10\).
Câu 2: (1,5 điểm) Cho biểu thức: \(A=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\) (với \(x>0;x\ne1\))
a) Rút gọn biểu thức A.
b) Tìm giá trị lớn nhất của biểu thức: \(P=A-9\sqrt{x}\)
Câu 3: (1,0 điểm) Một chiếc bè trôi từ bến sông A đến bến B với vận tốc dòng nước là 4 km/h, cùng lúc đó một chiếc thuyền chạy từ bến A đến B rồi quay lại ngay thì gặp chiếc bè tại vị trí C cách bến A là 8 km. Tính vận tốc thực của thuyền biết khoảng cách giữa hai bến A và B là 24 km.
Câu 4: (1,5 điểm) Trong hệ toạ độ Oxy, cho Parabol (P) : \(y=x^2\) và đường thẳng (d) có phương trình: \(y=\left(m-1\right)x+m^2-2m+3\)
a) Chứng minh với mọi giá trị của m thì (d) luôn cắt (P) tại hai điểm phân biệt.
b) Giả sử (d) cắt (P) tại hai điểm phân biệt A, B. Tìm m để tam giác OAB cân tại O. Khi đó tính diện tích tam giác OAB.
Câu 5: (3,0 điểm) Cho nửa đường tròn tâm O đường kính AB, M là một điểm bất kì thuộc đường tròn \(\left(M\ne A,B\right)\) . Tiếp tuyến tại M cắt các tiếp tuyến Ax và By của nửa đường tròn đó tại C và D.
a) Chứng minh: \(\widehat{COD}=90^o\)
b) Gọi K là giao điểm của BM với Ax. Chứng minh: \(\Delta KMO\sim\Delta AMD\)
c) Tìm giá trị nhỏ nhất của tổng diện tích hai tam giác ACM và BDM.
Câu 6: (1,0 điểm)
a) Cho hàm số: \(y=f\left(x\right)\) với \(f\left(x\right)\) là một biểu thức đại số xác định với mọi số thực \(x\ne0\). Biết rằng \(f\left(x\right)+3f\left(\dfrac{1}{x}\right)=x^2\left(\forall x\ne0\right)\). Tính \(f\left(2\right)\).
b) Cho ba số nguyên dương a, b, c đôi một khác nhau và thoả mãn: a là ước của b + c + bc, b là ước của c + a + ca và c là ước của a + b + ab. Chứng minh a, b, c không đồng thời là các số nguyên tố.