Lời giải:
Ta có:
\(x^4+x^3+3x^2+2x+2\)
\(=x^4-x+x^3-1+3x^2+3x+3\)
\(=x(x^3-1)+(x^3-1)+3(x^2+x+1)\)
\(=(x^3-1)(x+1)+3(x^2+x+1)\)
\(=(x-1)(x^2+x+1)(x+1)+3(x^2+x+1)\)
\(=(x^2+x+1)(x^2-1)+3(x^2+x+1)\)
\(=(x^2+x+1)(x^2-1+3)=(x^2+x+1)(x^2+2)\)
Cách khác :
\(x^4+x^3+3x^2+2x+2\)
\(=\left(x^4+x^3+x^2\right)+\left(2x^2+2x+2\right)\)
\(=x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)\)
\(=\left(x^2+2\right)\left(x^2+x+1\right)\)