\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8\\ =\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-8\\ =\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)
Đặt \(n=x^2+7x+10\)
\(\Rightarrow n\left(n+2\right)-8\\ =n^2+2n-8\\ =n^2-2n+4n-8\\ =\left(n^2-2n\right)+\left(4n-8\right)\\ =n\left(n-2\right)+4\left(n-2\right)\\ =\left(n-2\right)\left(n+4\right)\)
Thay \(n=n^2+7x+10\) vào đa thức ta được :
\(\left(n-2\right)\left(n+4\right)=\left(x^2+7x+8\right)\left(x^2+7x+14\right)\)
=> Vậy ...