xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
Phân tích đa thức thành nhân tử:
xy(x+y) + yz(y-z) - zx(z+x)
Phân tích đa thức thành nhân tử
a) \(\left(x+y-2z\right)^3+\left(y+z-2x\right)^3+\left(z+x-2y\right)^3\)
b) \(a\left(c^2+b^2+bc\right)+b\left(c^2+a^2+ca\right)+c\left(a^2+b^2+bc\right)\)
c) (a+b+c)(ab+ac+bc)-abc
d) \(c\left(a+2b\right)^3-b\left(2a+b\right)^3\)
e) xy(x+y)-yz(y+z)+xz(x-z)
Rút gọn biểu thức sau:
\(A=\frac{x^2-yz}{\left(x+y\right)\left(y+z\right)}+\frac{y^2-xz}{\left(x+y\right)\left(y+z\right)}+\frac{z^2-xy}{\left(x+z\right)\left(y+z\right)}\)
Phân tích đa thức thành nhân tử:
x2 + y3 + z3 - 3xyz
( x + y +z )3 - x3 - y 3 - z3
Các bạn ơi giúp gium mình bài này với. mình cảm ơn trước nha.
Chứng minh đẳng thức
\(\left(x+y+z\right)-x^2-y^2-z^2=2\left(xy+yz+xz\right)\)
Biết x , y , z khác 0 và x + y +z = 1/x + 1/y + 1/z .Chứng minh
y ( x2 - yz ) ( 1 -xz ) = x ( 1 - yz ) ( y2 - xz )
làm bài này giúp mk nha , mk hứa sẽ tích
Biết x , y , z khác 0 và x + y +z = 1/x + 1/y + 1/z .Chứng minh
y ( x2 - yz ) ( 1 -xz ) = x ( 1 - yz ) ( y2 - xz )
làm bài này giúp mk nha , mk hứa sẽ tích
Phân tích đa thức sau thành nhân tử :
a, X^2-Y^2- Z^2-2yz
b, 4x^2(x-6)+9y^2(6-x)
c, 6xy+5x-5y-3x^2-3y^2
Giai giúp tui nha. ai làm đúng vô tin nhắn nhận quà nhé ^^
ho x^2 + y^2 + z^2 =xy + yz + xz và z^2015 + y^2015 + z^2015=3^2016 .Tìm x,y,z