Giải phương trình \(\left(x^2+4x+11\right)\left(y^2-8x^2+21\right)=35\)
Phân tích đa thức thành nhân tử \(a^2\left(b-2c\right)+b^2\left(c-a\right)+2c^2\left(a-b\right)+abc\)
Phân tích đa thức thành nhân tử: \(A=\left(a+b+c\right).\left(bc+ca+ab\right)-abc\)
Phân tích các đa thức sau thành nhân tử:
a) \(yz.\left(y+z\right)+xz.\left(z-x\right)-xy.\left(x+y\right)\)
b) \(2a^2b+4ab^2-a^2c+ac^2-4b^2c+2bc^2-4abc\)
c) \(y.\left(x-2z\right)^2+8xyz+x.\left(y-2z\right)^2-2z.\left(x+y\right)^2\)
Phân tích đa thức thành nhân tử:
a. \(A=a^2b^2\left(a-b\right)-c^2b^2\left(c-b\right)+a^2c^2\left(c-a\right)\)
b. \(B=x^3+3x^2-4\)
1,cho các sô thực a,b,c thỏa mãn abc(a+b+c)=1. Tính giá trị của biểu thức Q=\(\frac{c^2\left(a+b\right)^2\left(1+a^2b^2\right)}{\left(1+b^2c^2\right)\left(1+c^2a^2\right)}\)
Phan tich da thuc sau thanh nhan tu:
a) \(a\left(b+c\right)^2+b\left(c+a\right)^2+c\left(a+b\right)^2\)
b)\(a^4+b^4+c^4-2a^2b^2-2a^2c^2-2c^2b^2\)
Phân tích đa thức thành nhân tử :
\(A=\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)
Phân tích các đa thức sau thành nhân tử: \(a.\left(b+c\right)^2.\left(b-c\right)+b.\left(c+a\right)^2.\left(c-a\right)+c.\left(a+b\right)^2.\left(a-b\right)\)
1/ Phân tích thành nhân tử: \(A=a^2b^2\left(b-a\right)+b^2c^2\left(c-b\right)+c^2a^2\left(a-c\right)\)
2/ Giải phương trình: \(\left(17x-5\right)^2+\left(6x-4\right)\left(17x-5\right)+\left(3x-2\right)^2=0\)