sửa đề:\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
giải:
\(\left(x+y+z\right)^3-x^3-y^3-z^3=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)-x^3-y^3-z^3\\ =3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
b,W = \(x^4+x^2+1+2009x^2+2009x+2009\)
\(=\left(x^4+2x^2+1\right)-x^2+2009\left(x^2+x+1\right)\)
\(=\left(x^2+1\right)^2-x^2+2009\left(x^2+x+1\right)\)
\(=\left(x^2+1-x\right)\left(x^2+1+x\right)+2009\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2010\right)\)
b, x4-x+2010x2+2009x+x+2010
=(x4-x)+(2010x22010x+2010)
=x(x3-1)+2010(x2+x+1)
=x(x-1)(x2+x+1)+2010(x2+x+1)
=(x2+x+1)[x(x-1)+2010]
=(x2+x+1)(x2-x+2010)