phan tich da thuc thanh nhan tu
\(\left(x^2-y^2+1\right)^3-x^6-y^6-1\)
thực hiện phép tính
a,\(x^3+\left[\frac{x\left(2y^3-x^3\right)}{x^3+y^3}\right]^3-\left[\frac{y\left(2x^3-y^3\right)}{x^3+y^3}\right]^3\)
b,\(\frac{\frac{x\left(x+y\right)}{x-y}+\frac{x\left(x+z\right)}{x-z}}{1+\frac{\left(y-z\right)^2}{\left(x-y\right)\left(x-z\right)}}+\frac{\frac{y\left(y+z\right)}{y-z}+\frac{y\left(y+x\right)}{y-x}}{1+\frac{\left(z-x\right)^2}{\left(y-z\right)\left(y-x\right)}}+\frac{\frac{z\left(z+x\right)}{z-x}+\frac{z\left(z+y\right)}{z-y}}{1+\frac{\left(x-y\right)^2}{\left(z-x\right)\left(z-y\right)}}\)
c,\(\left[\frac{y+z-2x}{\frac{\left(y-z\right)^3}{y^3-z^3}+\frac{\left(x-y\right)\left(x-z\right)}{y^2+yz+z^2}}+\frac{z+x-2y}{\frac{\left(z-x\right)^3}{z^3-x^3}+\frac{\left(y-z\right)\left(y-x\right)}{z^2+xz+x^2}}+\frac{x+y-2z}{\frac{\left(x-y\right)^3}{x^3-y^3}+\frac{\left(z-x\right)\left(z-y\right)}{x^2+xy+y^2}}\right]:\frac{1}{x+y+z}\)
phan tich cac da thuc sau thanh nhan tu :
a,2x+ 2y
b,5x+20y
c,6xy-30y
d,5x(x-110-10y(x-11)
e,x\(^3\)-4x\(^2\)+x
f,x(x+y)-(2x+2y)
h,5x(x-2y)+2(2y-x)
i,x\(^2\)y\(^3\)-\(\dfrac{1}{2}\)x\(^4\)y\(^8\)
j, a\(^2\)b\(^4\)+a\(^3\)b-abc
k, -x\(^2\)y\(^2\)z-6x\(^3\)y-8x\(^4\)z\(^2\)-9x\(^5\)y\(^5\)z\(^5\)
l, 7x(y-4)\(^2\)-(4-7)\(^3\)
cho 3 số x,y,z khác 0 thỏa mãn 1/x+1/y+1/z=0 gia tri bieu thuc K=(xy/z^2+yz/x^2+xz/y^2-2)^2017 là
đơn giản biểu thức : A= (x+y+z)^3 - (x+y-z)^3- ( y +z -x)^3- (xz+x-y)^3
BAI1 :phuong trinh vo nghiem neu tham so m bang bao nhieu biet :
m^2x+m=3mx+3
BAI2 : ba so thuc x,y,z co x+y+z =114 va xyz=46656. neu y=xk ; z=xk^2 thi x+z bang bao nhieu ?
Cho x, y, z thỏa mãn: \(x^3-y^2-y=y^3-z^2-z=z^3-x^2-x=\frac{1}{3}\)
Chứng minh rằng: x, y, z dương và x = y = z
CMR với mọi số thực x, y, z thì: (x^2+y^2)^3-(y^2+z^2(^3+(z^2-x^2)^3=3.(x^2+y^2).(y^2+z^2).(x^2-z^2)
Cho x, y, z là 3 số dương thỏa mãn x+y+z-4=0. Chứng minh rằng:
(x+y)(y+z)(z+x)>=x^3×y^3×z^3.