Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thanh Tùng

đơn giản biểu thức : A= (x+y+z)^3 - (x+y-z)^3- ( y +z -x)^3- (xz+x-y)^3

Nguyễn Lê Phước Thịnh
8 tháng 10 2022 lúc 22:11

\(A=\left(x+y+z\right)^3-\left(x+y-z\right)^3-\left(y+z-x\right)^3+\left(z+x-y\right)^3\)

Đặt \(B=\left(x+y+z\right)^3-\left(x+y-z\right)^3\)

\(=\left(x+y\right)^3+3z\left(x+y\right)^2+3\left(x+y\right)\cdot z^2+z^3-\left(x+y\right)^3+3z\left(x+y\right)^2-3\left(x+y\right)\cdot z^2+z^3\)

\(=6z\left(x+y\right)^2+2z^3\)

\(C=-\left(y+z-x\right)^3+\left(z+x-y\right)^3\)

\(=\left(x-y+z\right)^3+\left(x-y-z\right)^3\)

\(=\left(x-y\right)^3+3\left(x-y\right)^2\cdot z+3\left(x-y\right)\cdot z^2+z^3+\left(x-y\right)^3-3\left(x-y\right)^2\cdot z+3\left(x-y\right)\cdot z^2-z^3\)

\(=2\left(x-y\right)^3+6\left(x-y\right)\cdot z^2\)

=>\(A=6z\left(x+y\right)^2+2z^3+2\left(x-y\right)^3+6z^2\left(x-y\right)\)