Bài 8: Phân tích đa thức thành nhân tử bằng phương pháp nhóm các hạng tử

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đinh Cẩm Tú

Phân tích các đa thức sau thành nhân tử:

a) 3x2 + xy - 4y2

b) x8 - 5x4 + 4

c) x3 + 3x2 + 3x - 7

Akai Haruma
7 tháng 9 2021 lúc 10:01

Lời giải:

a.

$3x^2+xy-4y^2=(3x^2-3xy)+(4xy-4y^2)=3x(x-y)+4y(x-y)=(x-y)(3x+4y)$

b.

$x^8-5x^4+4=(x^8-x^4)-(4x^4-4)$

$=x^4(x^4-1)-4(x^4-1)=(x^4-1)(x^4-4)$

$=(x^2-1)(x^2+1)(x^2-2)(x^2+2)$

$=(x-1)(x+1)(x^2+1)(x-\sqrt{2})(x+\sqrt{2})(x^2+2)$

c.

$x^3+3x^2+3x-7=(x^3+3x^2+3x+1)-8$

$=(x+1)^3-2^3=(x+1-2)[(x+1)^2+2(x+1)+4]$

$=(x-1)(x^2+4x+7)$

Shauna
7 tháng 9 2021 lúc 9:58

a) \(3x^2+xy-4y^2=3x^2-3xy+4xy-4y^2\)

\(=3x(x-y)+4y(x-y)=(3x+4y)(x-y)\)

b)\(x^8-5x^4+4=x^8-x^4-4x^4+4\)

\(=x^2(x^4-1)-4(x^4-1)=(x^2-4)(x^4-1)\)

\(=(x-2)(x+2)(x^2-1)(x^2+1)=(x-2)(x+2)(x-1)(x+1)(x^2+1)\)

c)\(x^3+3x^2+3x-7=x^3+3x^2+3x+1-8\)

\(\left(x+1\right)^3-\sqrt{2}^3=\left(x+1-\sqrt[]{2}\right)\left(\left(x+1\right)^2+2\sqrt{2}x+2\right)\)

 

Nguyễn Lê Phước Thịnh
7 tháng 9 2021 lúc 14:18

a: \(3x^2+xy-4y^2\)

\(=3x^2+4xy-3xy-4y^2\)

\(=x\left(3x+4y\right)-y\left(3x+4y\right)\)

\(=\left(3x+4y\right)\left(x-y\right)\)

b: \(x^8-5x^4+4\)

\(=x^8-x^4-4x^4+4\)

\(=x^4\left(x^4-1\right)-4\left(x^4-1\right)\)

\(=\left(x^4-4\right)\left(x^4-1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^2-2\right)\left(x^2+2\right)\)


Các câu hỏi tương tự
Trần Hương Trà
Xem chi tiết
Đinh Cẩm Tú
Xem chi tiết
Đoàn Phương Linh
Xem chi tiết
Đinh Cẩm Tú
Xem chi tiết
ThanhNghiem
Xem chi tiết
bongbong nguyen
Xem chi tiết
Nguyệt Tích Lương
Xem chi tiết
Kwalla
Xem chi tiết
Hưng Việt Nguyễn
Xem chi tiết