a) x(\(y^2\)-\(z^2\))+y(\(z^2-z^2\)) + (\(x^2-y^2\))
=\(xy^2-xz^2+x^2z-y^2z\)
=\(y^2\left(x-z\right)+xz\left(x-z\right)\)
= \(y^2+xz\)
a) x(\(y^2\)-\(z^2\))+y(\(z^2-z^2\)) + (\(x^2-y^2\))
=\(xy^2-xz^2+x^2z-y^2z\)
=\(y^2\left(x-z\right)+xz\left(x-z\right)\)
= \(y^2+xz\)
Phân tích đa thức thành nhân tử bằng phương pháp thêm bớt để xuất hiện nhân tử chung:
a, \(x\left(y^2-z^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)\)
\(b,\left(x+y\right)\left(x^2-y^2\right)+\left(y+z\right)\left(y^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)
\(c,x^3\left(y-z\right)+y^3\left(z-x\right)+z^3\left(x-y\right)\)
\(d,a\left(b-c\right)^3+b\left(c-a\right)^3+c\left(a-b\right)^3\)
Làm ơn giúp mk nha! Cảm ơn nhìu.
Phân tích đa thức sau thành nhân tử:
a) \(4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)
b) \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
c) \(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)\)
d) \(x^3+y^3+z^3-3xyz\)
Cho \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=\left(x+y-2z\right)^2+\left(y+z-2x\right)^2+\left(x+z-2y\right)^2\)
Chứng minh rằng: x=y=z
Phân tích đa thức thành nhân tử:
1) \(a^4+b^4+c^4-2a^2b^2-2a^2c^2-2b^2c^2\)
2)\(a\left(b^2+c^2+bc\right)+b\left(c^2+a^2+ac\right)+c\left(a^2+b^2+ab\right)\)
3) \(\left(x+y\right)\left(x^2-y^2\right)+\left(y+z\right)\left(y^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)
Phân tích các đa thức thành nhân tử:
a) \(\dfrac{1}{2}\left(x^2+y^2\right)^2-2x^2y^2\)
b)\(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)
\(x\left(y^2-z^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)\)
Phân tích đa thức thành nhân tử
Phân tích đa thức thành nhân tử
a) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)
b) \(\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3\)
c) \(x^3+y^3+z^3-3xyz\)
d) \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)
e) \(x^3-5x^2y-14xy^2\)
Phân tích đa thức thành nhân tử
\(a,x\left(y^2+z^2\right)+y\left(z^2+x^2\right)+z\left(x^2+y^2\right)+2abc\)
Phân tích đa thức thành nhân tử :
\(P=x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)