a, \(x^6-x^4-9x^3+9x^2\)
= \(x^4\left(x^2-1\right)-9x^2\left(x-1\right)\)
=\(x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)
= \(\left(x-1\right)\left(x^4\left(x+1\right)-9x^2\right)\)
= \(\left(x-1\right)\left(x^5+x-9x^2\right)\)
b, \(x^4-4x^3+8x^2-16x+16\)
= \(x^4-4x^3+4x^2+4x^2-16x+16\)
\(=x^2\left(x^2-4x+4\right)+4\left(x^2-4x+4\right)\)
\(=\left(x^2+4\right)\left(x-2\right)^2\)
c, \(\left(xy+4\right)^2-4\left(x+y\right)^2\)
= \(\left(xy+4\right)^2-\left(2\left(x+y\right)\right)^2\)
= \(\left(xy-2x-2y+4\right)\left(xy+2x+2y+4\right)\)
= \(\left(x\left(y-2\right)-2\left(y-2\right)\right)\left(x\left(y+2\right)+2\left(y+2\right)\right)\)
=\(\left(x-2\right)\left(y-2\right)\left(x+2\right)\left(y+2\right)\)
d, \(\left(a+b+c\right)^2+\left(a-b+c\right)^2-4b^2\)
= \(a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2-2ab+2ac-2bc-4b^2\)
=\(2a^2+2b^2+2c^2+4ac-4b^2\)