a) P=(\(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\) ) : (\(\frac{1}{\sqrt{x}+1}+\frac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\) )
P=\(\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
P=\(\frac{x-1}{\sqrt{x}}\)
b) P<2 <=> \(\frac{x-1}{\sqrt{x}}\)<2 <=>
\(x-1< 2\sqrt{x}\\ < =>x^2-6x-1< 0\\ < =>\left(x-3\right)^2-8< 0\\ < =>\left(x-3\right)^2< 8\\ < =>x< 2\sqrt{2}+3\)