Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bùi Lê Trâm Anh

Cho A = \(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\left(\frac{1-x}{\sqrt{2}}\right)^2\)
a) Rút gọn A
b) Chứng minh A > 0 khi 0 < x < 1
c) Tìm GTLN của A

Nguyễn Việt Lâm
29 tháng 9 2019 lúc 22:22

ĐKXĐ: \(x>0;x\ne1\)

\(A=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\frac{\left(x-1\right)^2}{2}\)

\(=\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right)\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)

\(=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}=-\sqrt{x}\left(\sqrt{x}-1\right)=\sqrt{x}\left(1-\sqrt{x}\right)\)

Khi \(0< x< 1\Rightarrow0< \sqrt{x}< 1\Rightarrow0< 1-\sqrt{x}< 1\)

\(\Rightarrow\sqrt{x}\left(1-\sqrt{x}\right)>0\)

\(A=\sqrt{x}-x=-\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

\(A_{max}=\frac{1}{4}\) khi \(\sqrt{x}=\frac{1}{2}\Rightarrow x=\frac{1}{4}\)


Các câu hỏi tương tự
An Nhiên
Xem chi tiết
Kiều Ngọc Tú Anh
Xem chi tiết
Trần Thị Hảo
Xem chi tiết
Kiều Ngọc Tú Anh
Xem chi tiết
Phạm Hương Giang
Xem chi tiết
Trần Thị Hảo
Xem chi tiết
Sakura
Xem chi tiết
Trần Thị Hảo
Xem chi tiết
Dương Thanh Ngân
Xem chi tiết