P xác định với mọi \(x\in R\)
a/ \(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\frac{2}{\sqrt{x}+1}< 1\) ( vì \(\frac{2}{\sqrt{x}+1}>0\) )
b/ \(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}\Rightarrow P\left(\sqrt{x}+1\right)=\sqrt{x}-1\)
\(\Rightarrow P\sqrt{x}+P=\sqrt{x}-1\Rightarrow\left(P-1\right)\sqrt{x}=-P-1\)
\(\Rightarrow\sqrt{x}=\frac{-P-1}{P-1}\ge0\) ( vì \(\sqrt{x}\ge0\) )
\(\Rightarrow\left[{}\begin{matrix}P>1\\P\le-1\end{matrix}\right.\)
Vậy \(MinP=-1\Leftrightarrow x=0\)