Cho một giá tri lượng giác hãy tính các lượng giác còn lại
a, Cho sinα = 2/3, α € (π/2; π)
b, tanα = √2 và π <α < 3π/2
c, cos α= 2/√5; 0<α<π/2
d, cos α= 4/15 và 0<α<π/2
e, cot α= -3 và 3π/2<α<2π
f, tan α= -2; π/2<α<π
g, tan α= -1; π <α<3π/2
Các đẳng thức sau có thể đồng thời xảy ra không ?
a) \(\sin\alpha=\dfrac{\sqrt{2}}{3}\) và \(\cos\alpha=\dfrac{\sqrt{3}}{3}\)
b) \(\sin\alpha=\dfrac{-4}{5}\) và \(\cos\alpha=-\dfrac{3}{5}\)
c) \(\sin\alpha=0,7\) và \(\cos\alpha=0,3\)
Tính các giá trị lượng giác của góc \(\alpha\), nếu :
a) \(\cos\alpha=-\dfrac{1}{4},\pi< \alpha< \dfrac{3\pi}{2}\)
b) \(\sin\alpha=\dfrac{2}{3},\dfrac{\pi}{2}< \alpha< \pi\)
c) \(\tan\alpha=\dfrac{7}{3},0< \alpha< \dfrac{\pi}{2}\)
d) \(\cot\alpha=-\dfrac{14}{9},\dfrac{3\pi}{2}< \alpha< 2\pi\)
Cho \(\tan\alpha+\cot\alpha=m\), hãy tính theo \(m\) :
a) \(\tan^2\alpha+\cot^2\alpha\)
b) \(\tan^3\alpha+\cot^3\alpha\)
Cho \(\tan\alpha-3\cot\alpha=6\) và \(\pi< \alpha< \dfrac{3\pi}{2}\). Tính :
a) \(\sin\alpha+\cos\alpha\)
b) \(\dfrac{2\sin\alpha-\tan\alpha}{\cos\alpha+\cot\alpha}\)
Cho \(\pi< \alpha< \dfrac{3\pi}{2}\). Xác định dấu của các giá trị lượng giác sau :
a) \(\cos\left(\alpha-\dfrac{\pi}{2}\right)\)
b) \(\sin\left(\dfrac{\pi}{2}+\alpha\right)\)
c) \(\tan\left(\dfrac{3\pi}{2}-\alpha\right)\)
d) \(\cot\left(\alpha+\pi\right)\)
Tính các giá trị lượng giác của góc\(\alpha\), nếu :
a) \(\cos\alpha=\dfrac{4}{13}\) và \(0< \alpha< \dfrac{\pi}{2}\)
b) \(\sin\alpha=-0,7\) và \(\pi< \alpha< \dfrac{3\pi}{2}\)
c) \(\tan\alpha=-\dfrac{15}{7}\) và \(\dfrac{\pi}{2}< \alpha< \pi\)
d) \(\cot\alpha=-3\) và \(\dfrac{3\pi}{2}< \alpha< 2\pi\)
1. Tính giá trị biểu thức
S= cos70 +cos50 -cos10
2. Cho a+b=π/4. Cm
(1+tanα).(1+tanβ) =2
3. Tính giá trị biểu thức
P= sin^2 10¤ +sin^2 50¤ +sin^2 70¤
Biết \(\sin\alpha=\dfrac{3}{4}\) và \(\dfrac{\pi}{2}< \alpha< \pi\). Tính :
a) \(A=\dfrac{2\tan\alpha-3\cot\alpha}{\cos\alpha+\tan\alpha}\)
b) \(B=\dfrac{\cos^2\alpha+\cot^2\alpha}{\tan\alpha-\cot\alpha}\)