1. Rút gọn
P=\(2\sqrt{1+\frac{1}{4}\left(\sqrt{\frac{1}{x}}-\sqrt{x}\right)^2}:\left[\sqrt{1+\frac{1}{4}\left(\sqrt{\frac{1}{x}}-\sqrt{x}\right)^2}-\frac{1}{2}\left(\sqrt{\frac{1}{x}}-\sqrt{x}\right)^2\right]\)
Cho bt:
\(Q=\frac{\sqrt{x-\sqrt{4x-1}}+\sqrt{x+\sqrt{4x-1}}}{\sqrt{x^2-4x-1}}.\left(1-\frac{1}{x-1}\right)\)
a. Tìm Dkxd
b. Rút gọn
Bài 1 : Rút gọn biểu thức
a,\(\sqrt{\frac{\left(x-2\right)^4}{\left(3-x\right)^2}+\frac{x^2-1}{x-3}}\) ( x < 3 )
b,\(4x-\sqrt{8}+\frac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\) (x >-2)
c,\(\left|x-2\right|+\frac{\sqrt{x^2-4x+4}}{2}\)( x > 2)
Help me !!!
Cho biểu thức : \(A=\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\) .
a, Rút gọn A
b, Tìm x để \(A>A^2\)
1/ Rút Gọn với x > 0, x ≠ 1
A = \(\left(\frac{2+\sqrt{x}}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right)\left(\frac{x\sqrt{x}+x-\sqrt{x}-1}{\sqrt{x}}\right)\)
2/ Giải Phương Trình
a) \(\sqrt{4x-\sqrt{32}}+\sqrt{x-\sqrt{2}}=12\)
b) \(\sqrt{4x-1}+\sqrt{9x-\frac{9}{4}}=15\)
c) \(\sqrt{x^2+x-5}=\sqrt{x-1}\)
d) \(\sqrt{2x^2+3x-13}=x-1\)
3/ Tìm giá trị nhỏ nhất: A = x - \(\sqrt{x}+2\)
4/ Tìm giá trị lớn nhất: B = 3\(\sqrt{x}\) - x + 1
Tìm x :
h/ \(\sqrt{x+5}-10=-4\)
i/ \(\sqrt{x-5}+2\sqrt{4x-20}-\frac{1}{3}\sqrt{9x-45}=12\)
j/ \(3\sqrt{2x}+\frac{1}{7}\sqrt{98x}-\sqrt{72x}+4=0\)
k/ \(\sqrt{4x^2-20}-\frac{1}{3}\sqrt{x^2-5}+\sqrt{\frac{9x^2-45}{16}}-\frac{1}{2}\sqrt{\frac{25x^2-125}{36}}=4\)
l/ \(\sqrt{4x+4}+\sqrt{9x+9}-\sqrt{x+1}=4\)
m/ \(\sqrt{16\left(x+1\right)}+\sqrt{4x+4}=16-\sqrt{x+1}+\sqrt{9x+9}\)
Giúp mk với nhé mn
Bài 2 :
U = \(\frac{4x}{x^2+x\sqrt{x}+\sqrt{x}+1}:\left(\frac{1}{x+2\sqrt{x}+1}-\frac{2}{1-x}+\frac{1}{x-2\sqrt{x}+1}\right)\)
a, Tìm đkxđ
b, Rút gọn
Rút gọn A = \(\left(\frac{x+2\sqrt{x}+4}{x\sqrt{x}-8}+\frac{x+2\sqrt{x}+1}{x-1}\right) :\left(3+\frac{1}{\sqrt{x}-2}+\frac{2}{\sqrt{x}+1}\right)\)
a, Rút gọn A b , Tìm x thỏa mãn A > 1 c,Tính A với \(x=\frac{\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}}{\sqrt{4+\sqrt{13}}}+\sqrt{27-10\sqrt{2}}\)\(A=\frac{\sqrt{x}+1}{3\left(\sqrt{x}-1\right)}\)
a. A=(\(\frac{3x+16\sqrt{x}-7}{x+2\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}+3}-\frac{\sqrt{x}+7}{\sqrt{x}-1}\)) : (\(2-\frac{\sqrt{x}}{\sqrt{x}-1}\))
b. B=(\(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\)) :( 1-\(\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1}\))
c. C=( \(\frac{\sqrt{x}-4x}{1+4x}-1\)):(\(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}}-1\))
d. D=(\(\frac{\sqrt{a-b}}{\sqrt{a+b}+\sqrt{a+b}}+\frac{a-b}{\sqrt{a^2-b^2}-a+b}\))\(\frac{a^2+b^2}{\sqrt{a^2-b^2}}\)
e. E=\(\frac{\left(\sqrt{a}-\sqrt{b}\right)+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}-b\)