Cho biểu thức : \(A=\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\) .
a, Rút gọn A
b, Tìm x để \(A>A^2\)
P = 1 - \(\left(\frac{2}{\sqrt{x}+2}-\frac{5\sqrt{x}}{4x-1}+\frac{1}{1-2\sqrt{x}}\right):\frac{\sqrt{x}-1}{4x+4\sqrt{x}+1}\)
rút gọn P
A=\(1-\left(\dfrac{2}{1+2\sqrt{x}}-\dfrac{5\sqrt{x}}{4x-1}-\dfrac{1}{1-2\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{4x+4\sqrt{x}+1}\)
Rút gọn biểu thức trên
a. A=(\(\frac{3x+16\sqrt{x}-7}{x+2\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}+3}-\frac{\sqrt{x}+7}{\sqrt{x}-1}\)) : (\(2-\frac{\sqrt{x}}{\sqrt{x}-1}\))
b. B=(\(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\)) :( 1-\(\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1}\))
c. C=( \(\frac{\sqrt{x}-4x}{1+4x}-1\)):(\(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}}-1\))
d. D=(\(\frac{\sqrt{a-b}}{\sqrt{a+b}+\sqrt{a+b}}+\frac{a-b}{\sqrt{a^2-b^2}-a+b}\))\(\frac{a^2+b^2}{\sqrt{a^2-b^2}}\)
e. E=\(\frac{\left(\sqrt{a}-\sqrt{b}\right)+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}-b\)
Bài 1 : Rút gọn biểu thức
a,\(\sqrt{\frac{\left(x-2\right)^4}{\left(3-x\right)^2}+\frac{x^2-1}{x-3}}\) ( x < 3 )
b,\(4x-\sqrt{8}+\frac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\) (x >-2)
c,\(\left|x-2\right|+\frac{\sqrt{x^2-4x+4}}{2}\)( x > 2)
Help me !!!
1/ Rút Gọn với x > 0, x ≠ 1
A = \(\left(\frac{2+\sqrt{x}}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right)\left(\frac{x\sqrt{x}+x-\sqrt{x}-1}{\sqrt{x}}\right)\)
2/ Giải Phương Trình
a) \(\sqrt{4x-\sqrt{32}}+\sqrt{x-\sqrt{2}}=12\)
b) \(\sqrt{4x-1}+\sqrt{9x-\frac{9}{4}}=15\)
c) \(\sqrt{x^2+x-5}=\sqrt{x-1}\)
d) \(\sqrt{2x^2+3x-13}=x-1\)
3/ Tìm giá trị nhỏ nhất: A = x - \(\sqrt{x}+2\)
4/ Tìm giá trị lớn nhất: B = 3\(\sqrt{x}\) - x + 1
Bài 2 :
U = \(\frac{4x}{x^2+x\sqrt{x}+\sqrt{x}+1}:\left(\frac{1}{x+2\sqrt{x}+1}-\frac{2}{1-x}+\frac{1}{x-2\sqrt{x}+1}\right)\)
a, Tìm đkxđ
b, Rút gọn
Cho x,y thỏa mãn x>1, y<0 và \(\frac{\left(x+y\right)\left(x^3-y^3\right)\sqrt{4x-2\sqrt{4x-1}}}{\left(1-\sqrt{4x-1}\right)\left(x^2y^2+xy^3+y^4\right)}=-8\). Vậy \(\frac{x}{y}=\)
1 Cho P=\(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)(0<x≠1)
a) Rút gọn
b) Tính GTLN của Q=\(P-9\sqrt{x}+2019\)
2
a) Giải pt: \(x-1+4\sqrt{4-x}=4\sqrt{x-1}+\sqrt{\left(7-x\right)\left(x-1\right)}\)
b) Cho a,b số thực a≠0
CM: \(\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{a}}+\frac{3a+3\sqrt{ab}}{b-a}=0\)
c) Cho a, b, c là 3 số dương
CM: \(\frac{1}{a\left(a^2+8bc\right)}+\frac{1}{b\left(b^1+8ac\right)}+\frac{1}{c\left(c^2+8ab\right)}\le\frac{3}{3abc}\)
Dấu "=" xảy ra khi nào?
4
a) Tìm các số tự nhiên n sao cho n-50 và n+50 đều là số chính phương
b) Tìm số nguyên P,q sao cho
\(P^2=8q+1\)
5 Giải pt \(2\left(x^2-4x\right)+\sqrt{x^2-4x-5}-13=0\)
6 Cho 3 số thực x, y, z thỏa \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge z\)
Tìm GTNN của P=xyz