c,\(\left|x-2\right|+\frac{\sqrt{\left(x-2\right)^2}}{2}\)
Vì x > 2 nên ta có:
\(\left|x-2\right|+\frac{\sqrt{\left(x-2\right)^2}}{2}=x-2+\frac{x-2}{2}=\frac{3\left(x-2\right)}{2}\)
c,\(\left|x-2\right|+\frac{\sqrt{\left(x-2\right)^2}}{2}\)
Vì x > 2 nên ta có:
\(\left|x-2\right|+\frac{\sqrt{\left(x-2\right)^2}}{2}=x-2+\frac{x-2}{2}=\frac{3\left(x-2\right)}{2}\)
Gpt: a) \(\sqrt[4]{3\left(x+5\right)}-\sqrt[4]{11-x}=\sqrt[4]{13+x}-\sqrt[4]{3\left(3-x\right)}\)
b) \(\frac{1+2\sqrt{x}-x\sqrt{x}}{3-x-\sqrt{2-x}}=2\left(\frac{1+x\sqrt{x}}{1+x}\right)\) c) \(\sqrt{x+1}+\frac{4\left(\sqrt{x+1}+\sqrt{x-2}\right)}{3\left(\sqrt{x-2}+1\right)^2}=3\)
d) \(\sqrt{\frac{x-2}{x+1}}+\frac{x+2}{\left(\sqrt{x+2}+\sqrt{x-2}\right)^2}=1\) e) \(2x+1+x\sqrt{x^2+2}+\left(x+1\right)\sqrt{x^2+2x+2}=0\)
f) \(\sqrt{2x+3}\cdot\sqrt[3]{x+5}=x^2+x-6\)
1, gpt
a,\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
b, \(\left(4x+2\right)\sqrt{x+8}=3x^2+7x+8\)
c,\(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
2/ cho x,y,z thỏa mãn : \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\frac{1}{x+y+z}=1\)
tính giá trị biểu thức B=\(\left(x^{29}+y^{29}\right)\left(x^{11}+y^{11}\right)\left(x^{2013}+y^{2013}\right)\)
Tìm điều kiện x để các biểu thức sau \(a)\frac{x}{x^2-4}+\sqrt{x-2}\\ b)\frac{\sqrt{x}}{\left|x\right|-1}\\ c)\frac{2}{\left|x\right|+4}+\sqrt{x^2-4}\\ d)\frac{1}{\sqrt{x-2\sqrt{x-1}}}\\ e)\sqrt{x^2-2x}+3\sqrt{4-x^2}\)
Rút gọn A = \(\left(\frac{x+2\sqrt{x}+4}{x\sqrt{x}-8}+\frac{x+2\sqrt{x}+1}{x-1}\right) :\left(3+\frac{1}{\sqrt{x}-2}+\frac{2}{\sqrt{x}+1}\right)\)
a, Rút gọn A b , Tìm x thỏa mãn A > 1 c,Tính A với \(x=\frac{\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}}{\sqrt{4+\sqrt{13}}}+\sqrt{27-10\sqrt{2}}\)\(A=\frac{\sqrt{x}+1}{3\left(\sqrt{x}-1\right)}\)
Cho biểu thức: P = \(\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}+\frac{4x}{x-4}\right):\frac{\sqrt{x}-3}{2\sqrt{x}-x}\)
a) Rút gọn P
b) Tìm x để P < 0; P > 0
Cho biểu thức:
\(P=\left(\frac{2\sqrt{x}}{\sqrt{x+3}}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a)Rút gọn biểu thức P
b)Tìm x để \(p< -\frac{1}{2}\)
c)Tìm x để \(P.\left(\sqrt{x}+3\right)+2\sqrt{x}-2+x=2\)
d)Tìm m để \(P.\left(\sqrt{x}+3\right)+x\left(\sqrt{x}-m\right)=x-\sqrt{x}\left(3+m\right)\)
Cho A=\(\left[\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{4x}{4-x}\right)-\frac{2-\sqrt{x}}{2+\sqrt{x}}\right]\div\frac{x-\sqrt{x}}{2\sqrt{x}-x}\)
a)Rút gọn A
b)Tìm A biết x=\(3+2\sqrt{2}\)
Cho biểu thức \(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a)Rút gọn P
b)Tìm x để \(P< \frac{1}{2}\)
c)Tìm x để \(P.\left(\sqrt{x}+3\right)+2\sqrt{x}-2+x=2\)
d)Tìm m để \(P.\left(\sqrt{x}+3\right)+x\left(\sqrt{x}-m\right)=x-\sqrt{x}\left(3+m\right)\)
Cho biểu thức A=\(\left(\frac{x+2\sqrt{x}+4}{x\sqrt{x}-8}+\frac{x+2\sqrt{x}+1}{x-1}\right):\left(3+\frac{1}{\sqrt{x}-2}+\frac{2}{\sqrt{x}+1}\right)\)
Rút gọn A?
b, Tính A biết x=\(\frac{\sqrt{7+\sqrt{5}}+\sqrt{7-\sqrt{5}}}{\sqrt{7+2\sqrt{11}}}+\sqrt{83-18\sqrt{2}}\)