Oxy , A(1;2) ; B(2;5) , đường d x-2y-2=0.Tìm tọa độ M\(\in\)d sao cho
a)\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) đạt giá trị nhỏ nhất
b)\(MA^2+MB^2\) đạt giá trị nhỏ nhất
Cho ΔABC . Tìm tập hợp điểm M thõa mãn \(\left|3\overrightarrow{MA}+2\overrightarrow{MB}-2\overrightarrow{MC}\right|=\left|\overrightarrow{MB}-\overrightarrow{MC}\right|\)
Cho ΔABC trọng tâm G , gọi I là trung điểm BC . Tìm M là điểm thõa mãn \(2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=3\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)
Cho ΔABC có trọng tâm G . Tìm tập hợp điểm M thõa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{AB}-\overrightarrow{AC}\right|\)
Trong hệ trục tọa độ \(\left(O,\overrightarrow{i},\overrightarrow{j}\right)\), cho \(\overrightarrow{a}\) = (1;2) và\(\overrightarrow{b}\) = (x ; 1) .
a) Tìm x để \(\overrightarrow{a}và\overrightarrow{b}\)vuông góc với nhau.
b) Tìm x để độ dài của \(\overrightarrow{a}và\overrightarrow{b}\) bằng nhau.
cho \(\Delta ABC\). Tổng \(\left(\overrightarrow{AB},\overrightarrow{BC}\right)+\left(\overrightarrow{BC},\overrightarrow{CA}\right)+\left(\overrightarrow{CA},\overrightarrow{AB}\right)\) có thể chấp nhận giá trị nào trong các giá trị sau : \(90^o;180^o;270^o;360^o\) ?
cho tam giác ABC vuông tại A và B = 30o .Tính các giá trị của biểu thức sau:
a) \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)+\sin\left(\overrightarrow{BA},\overrightarrow{BC}\right)+\tan\frac{\left(\overrightarrow{AC},\overrightarrow{CB}\right)}{2}\)
B) \(\sin\left(\overrightarrow{AB},\overrightarrow{AC}\right)+\cos\left(\overrightarrow{BC},\overrightarrow{BA}\right)+\cos\overrightarrow{CA},\overrightarrow{BA}\)
Cho tam giác ABC có A(2;1), B(-1;2), C(3;4)
a) Tìm toạ độ vecto AB và tính độ dài đoạn thẳng AB.
b) Tìm toạ độ điểm D sao cho \(3\overrightarrow{AB}-2\overrightarrow{BD}+\overrightarrow{CD}=0\)