\(=\int\left(1+x\right)^ndx=\dfrac{1}{n+1}\left(1+x\right)^{n+1}+C\)
\(=\int\left(1+x\right)^ndx=\dfrac{1}{n+1}\left(1+x\right)^{n+1}+C\)
Tìm các nguyên hàm sau bằng phương pháp lấy nguyên hàm từng phần
a) \(I_1=\int x^22^xdx\)
b) \(I_2=\int x^2e^{3x}dx\)
c) \(I_3=\int e^{3x}\left(x^2-6x+2\right)dx\)
Tìm các nguyên hàm sau đây
a) \(I_1=\int e^{2x}\sin3xdx\)
b) \(I_2=\int e^{-x}\cos\frac{x}{2}dx\)
c) \(I_2=\int e^{3x}\cos\left(e^x\right)d\)
cho \(\int f\left(4x\right)dx\) = x2+3x+C. Mệnh đề nào sau đây đúng?
A. \(\int f\left(x+2\right)dx\) =x2+7x+C
B.\(\int f\left(x+2\right)dx\) =\(\frac{x^2}{2}\)+4x+C
C.\(\int f\left(x+2\right)dx\)=\(\frac{x^2}{4}\)+2x+C
D.\(\int f\left(x+2\right)dx\)=\(\frac{x^2}{4}\)+4x+C
Giúp mình bài này với, cám ơn mọi người nhiều
Tìm họ nguyên hàm của các hàm số sau:
a) \(\int\cos\left(x\right)^{\sin\left(x\right)}dx\)
b) \(\int\frac{\sqrt{x}}{4-x^2}dx\)
c) \(\int\frac{\sqrt{1+x^2}}{x}dx\)
d) \(\int\ln\left(\ln\left(x\right)\right)dx\)
Tính nguyên hàm \(\int e^x\left(2-x\right)dx\)
Câu 1: Cho hàm số \(f\left(x\right)\) liên tục trên tập xác định thoả mản \(\int\limits^1_{-1}f\left(x^2\right)dx=2\) và \(\frac{f\left(x\right)}{f’\left(x\right)}=-x\) . Khi này tính \(\int\limits^e_1f\left(x\right)dx\)
a) -1
b) 0
c) 2
d) Đáp án khác
\(\int tan\left(x\right)-ln^{15}\left(cos\left(x\right)\right)dx\)
\(\int\dfrac{x^4+x^2+1}{2x^3+5x^2-7}dx\)
tính nguyên hàm , ai giúp mình 2 bài này với hoặc 1 bài thôi cũng đc ạ , xin cảm ơn nhiều.
Tìm nguyên hàm của hàm số : \(\int\dfrac{x\ln\left(x+\sqrt{x^2+1}\right)}{\sqrt{x^2+1}}dx\)
Câu 1: Gọi nguyên hàm của hàm số \(\int\frac{sin\left(x\right)}{sin\left(x\right)+cos\left(x\right)}dx\) có dạng \(ax+bln\left|sin\left(x\right)+cos\left(x\right)\right|+C\) (a,b là các số hữu tỉ) và nguyên hàm của hàm số \(\int cos^2\left(x\right)dx\) có dạng \(cx+\frac{1}{2d}sin\left(dx\right)+C\) ( c,d là các số hữu tỉ) . Khi này tính \(I=2a-2b+2c+d\) bằng
a) 4
b) 5
c) \(\frac{3}{2}\)
d) \(\frac{25}{4}\)
Câu 2. Cho hàm số \(f\left(x\right)=sin\left(ln\left(x\right)\right)\) và \(g\left(x\right)=cos\left(ln\left(x\right)\right)\)
a) Tích nguyên hàm của \(\int\left[f\left(x\right)-g\left(x\right)\right]dx\)
b) Biết \(\int\limits^{e^{\pi}}_1f\left(x\right)dx=\frac{1}{a}\left(e^b+c\right)\) . Tính \(\left(a-c\right)^2\cdot b\)
Câu 3: Cho hàm số \(f\left(x\right)\) có đạo hàm liên tục trên đoạn \(\left[0;1\right]\) thoả mản điều kiện \(f\left(2020x+2019\right)=2020f\left(x\right),\forall x\in R.\) Tính tích phân \(\int\limits^1_03\left[f\left(x\right)\right]^2dx\) bằng
a) \(\frac{7}{3}\left[f\left(1\right)\right]^2\)
b) \(\frac{3}{7}\left(f\left(1\right)\right)^2\)
c) \(7\left[f\left(-1\right)\right]^2\)
d\(\frac{3}{7}\left[f\left(-1\right)\right]^2\)