§4. Các tập hợp số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
TÚ TRẦN 2K4

nghiệm của pt \(\sqrt[3]{12-x}+\sqrt[3]{4+x}=2\) có dạng \(\frac{a+b\sqrt{21}}{c}\) với a,b,c tối giản. tính T=a+b+c

Nguyễn Việt Lâm
12 tháng 2 2020 lúc 19:37

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{12-x}=a\\\sqrt[3]{4+x}=b\end{matrix}\right.\) ta có hệ:

\(\left\{{}\begin{matrix}a+b=2\\a^3+b^3=16\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=2\\\left(a+b\right)\left(a^2+b^2-ab\right)=16\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=2-a\\a^2+b^2-ab=8\end{matrix}\right.\)

\(\Rightarrow a^2+\left(2-a\right)^2-a\left(2-a\right)-8=0\)

\(\Leftrightarrow3a^2-6a-4=0\Rightarrow a=\frac{3\pm\sqrt{21}}{2}\)

\(\Rightarrow\sqrt[3]{12-x}=\frac{3\pm\sqrt{21}}{2}\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{36-16\sqrt{21}}{9}\\x=\frac{36+16\sqrt{21}}{9}\end{matrix}\right.\)

Bài toán có tới 2 nghiệm thỏa mãn? b có 2 giá trị là \(\pm16\) lấy cái nào?

Khách vãng lai đã xóa